redis慢日志分析平台上线后,随便看了一下,发现onestore使用的缓存集群,存在大量的EXISTS命令慢查询的情况:
平均每个EXISTS命令需要13ms,最大耗时近20ms。这个结果很不科学啊,EXISTS命令只是执行一次hash查找操作,应该是us级别。
和相关同学了解业务背景如下:
- 业务是userfeed,存放用户发表的动态
- 使用zset存储一个用户发表的所有动态,key是用户id,集合中对应的是feedid。如果用户发表的动态很多,zset也很大
- redis集群作为onestore的缓存,过期时间是10分钟
- 在访问cache前会调用EXISTS查看是否命中,如果不命中就用onestore回填cache
由于一些用户发表的动态很多(2W+),所以存在很多的ZADD慢查询。
二、排查
1. redis的清除过期key的策略
- 被动方式:在事件循环中,每秒执行约10次,尽力删除过期的key,会有漏掉的情况
- 从expire set中随机检查20个key
- 删除到过期的key
- 如果超过25%的key都是过期了,就重复第一步(超过25%说明过期的key占比很多)
- 主动方式:
- 如果该key在被动方式中漏过,在其再次被访问时检查并清除
2. 查看代码
- void existsCommand(redisClient *c) {
- expireIfNeeded(c->db,c->argv[1]); // 检查该key是否过期,如果过期就delete掉
- if (dbExists(c->db,c->argv[1])) {
- addReply(c, shared.cone);
- } else {
- addReply(c, shared.czero);
- }
- }
3. redis慢日志验证
通过慢日志可以验证上述结论
- EXISTS先检查‘user:94479529:feed’是否存在,该key已经过期,触发主动过期机制,将该key删除
- 从onestore获取该key的数据,然后通过ZADD回填
三、风险
该集群单个实例qps达到8k+,同时每天有10W+的慢查询。在redis存在大量慢查询时,会存在个别客户端超时的情况,导致请求失败。
四、后续处理
1. 增加过期时间,由10分钟到20分钟
2. 对redis集群扩容(试增加过期时间的效果而定)
对于redis删除大key耗时的问题,redis作者提供了解决方案,具体就是使用异步线程对大key进行删除操作,避免阻塞主线程。
-
顶
- 0
-
踩