python33天打卡

 CUDA和PyTorch环境检查

import torch

# 检查CUDA是否可用
print(f"CUDA available: {torch.cuda.is_available()}")

# 如果可用则显示详细信息
if torch.cuda.is_available():
    print(f"GPU名称: {torch.cuda.get_device_name(0)}")
    print(f"PyTorch使用的CUDA版本: {torch.version.cuda}")
else:
    print("未检测到可用GPU或CUDA环境未正确配置")

# 检查系统CUDA版本(需要安装CUDA Toolkit)
# 注意:这个版本可能与PyTorch使用的运行时版本不同
try:
    from subprocess import check_output
    cuda_version = check_output(["nvcc", "--version"]).decode('utf-8')
    print("系统CUDA Toolkit版本:")
    print(cuda_version.split('\n')[-2])
except Exception as e:
    print("无法获取系统CUDA Toolkit版本,可能未安装或未添加到环境变量")

数据准备

# 仍然用4特征,3分类的鸢尾花数据集作为我们今天的数据集
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
import numpy as np

# 加载鸢尾花数据集
iris = load_iris()
X = iris.data  # 特征数据
y = iris.target  # 标签数据
# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

# 打印下尺寸
print(X_train.shape)
print(y_train.shape)
print(X_test.shape)
print(y_test.shape)

@浙大疏锦行

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值