车辆检测
识别图像中的所有车辆,返回每辆车的类型和坐标位置,识别小汽车、卡车、巴士、摩托车、三轮车、自行车等多类车辆。
车辆属性识别
针对汽车识别多种外观属性,包括:是否有车窗雨眉、是否有车顶架、副驾驶是否有人、驾驶位是否系安全带、遮阳板是否放下、车辆朝向等,针对不同数据集可以做不同种类属性分析。
本文采用VeRi
的车辆重识别的大规模基准数据集。
VeRi
的特点包括:
- 20台摄像机在1KM^2的城市区域内24小时拍摄而来,包含776辆车的超过50,000张图像。
- 图像是在真实世界的无约束监视场景中捕获的,并标注不同的属性,例如: BBox,类型,颜色和品牌。
- 每辆车在不同的视点,照明,分辨率和遮挡下由2~18台摄像机拍摄。
- 还标注了足够的车牌和时空信息,例如板块的BBox,车牌号,拍摄的时间戳以及相邻相机之间的距离。
本文使用该数据集车的类型、颜色属性训练自己的网络。
颜色:1 yellow 2 orange 3 green 4 gray 5 red 6 blue 7 white 8 golden 9 brown 10 black。
类型:1 sedan 2 suv 3 van 4 hatchback 5 mpv 6 pickup 7 bus 8 truck 9 estate。
网络图片效果展示
网络图片效果展示
应用场景
交通安防
基于道路交通监控图像,识别各类车辆,综合车辆外观属性、车牌信息、品牌型号等,形成完整的车辆画像,进行特定车辆的定位和追踪,为分析预警提供多维度参考依据。
总结
训练自己的模型时,验证集准确率达到93%后就很难往上提升了,查看数据集发现存在少许标注错误。