人脸属性
人脸是一种非常重要的生物特征,具有结构复杂、细节变化多等特点,同时也蕴含了大量的信息,比如性别、种族、年龄、表情等。一个正常的成年人可以轻易的理解人脸的信息,但将同样的能力赋予给计算机,并让其代替人类进行类脑思考成为研究学者亟待攻克的科学课题!
人类可以通过使用相机等图像采集装置和计算机组建一套与人体类似的系统,相机等图像采集装置是“眼睛”,计算机是“大脑”。但是问题来了,这些单纯的硬件设施并不足以让机器完成理解人脸信息的任务,这其中还需要载有思考能力,也就是我们平时所说的算法
人脸检测
在图像中定位到人脸在图像中的位置,方便提取人脸进行属性分析。
人脸属性
主流人脸属性包括:年龄、性别、姿态角、魅力值、表情、眼镜穿戴、种族等。
姿态角度:
Pitch:三维旋转之俯仰角度[-90(上), 90(下)]
Roll:平面内旋转角[-180(逆时针), 180(顺时针)]
Yaw:三维旋转之左右旋转角[-90(左), 90(右)]
表情:none:不笑;smile:微笑;laugh:大笑
是否带眼镜:none:无眼镜,common:普通眼镜,sun:墨镜
族裔:yellow:黄种人,white:白种人 black:黑种个人,baras:阿拉伯人
网络图片效果展示
网络图片效果展示
网络图片效果展示
网络图片效果展示
总结
数据集:使用webface数据集,在实际应用中加入场景数据效果会更好。
属性分析:人脸属性分析的效果跟实际抓拍的人脸图像质量有很大关系,建议在抓拍时加入人脸质量评价模型。