Python 迭代器 生成器

迭代器(Iterator)


可以直接作用于for循环的对象,统称为可迭代对象:Iterable。
可以被next()函数调用并不断返回下一个值的对象,称为迭代器:Iterator。

Iterator对象表示的是一个数据流,Iterator对象可以被next()函数调用并不断返回下一个数据,直到没有数据时抛出StopIteration错误。可以把这个数据流看做是一个有序序列,但我们却不能提前知道序列的长度,只能不断通过next()函数实现按需计算下一个数据,所以Iterator的计算是惰性的,只有在需要返回下一个数据时它才会计算。
Iterator甚至可以表示一个无限大的数据流,例如全体自然数。而使用list是永远不可能存储全体自然数的。
迭代器仅仅在迭代到某个元素时才计算该元素,而在这之前或之后,元素可以不存在或者被销毁。这个特点使得它特别适合用于遍历一些巨大的或是无限的集合,比如几个G的文件,或是斐波那契数列等等。

与一般的序列类型(list, tuple等)有什么区别:
它一次只返回一个数据项,占用更少的内存。
但它需要记住当前的状态,以便返回下一数据项。它是一个有着next()方法的对象。
而序列类型则保存了所有的数据项,它们的访问是通过索引进行的。

对于原生支持随机访问的数据结构(如tuple、list),迭代器和经典for循环的索引访问相比并无优势,反而丢失了索引值(可以使用内建函数enumerate()找回这个索引值)。

迭代器有两个基本的方法

next方法:返回迭代器的下一个元素
__iter__方法:返回迭代器对象本身

迭代器:仅是一容器对象,它实现了迭代器协议。

下面用生成斐波那契数列为例子,说明为何用迭代器。
def fab(max): 
    n, a, b = 0, 0, 1 
    while n < max: 
        print b 
        a, b = b, a + b 
        n = n + 1
直接在函数fab(max)中用print打印会导致函数的可复用性变差,因为fab返回None。其他函数无法获得fab函数返回的数列。
def fab(max): 
    L = []
    n, a, b = 0, 0, 1 
    while n < max: 
        L.append(b) 
        a, b = b, a + b 
        n = n + 1
    return L
满足了可复用性的需求,但是占用了内存空间,最好不要。
class Fab(object):
    def __init__(self, max):
        self.max = max
        self.n, self.a, self.b = 0, 0, 1

    def __iter__(self):
        return self

    def next(self):
        if self.n < self.max:
            r = self.b
            self.a, self.b = self.b, self.a + self.b
            self.n = self.n + 1
            return r

        raise StopIteration


>>> for key in Fabs(5):
    print key
      
1
1
2
3
5
Fabs 类通过 next() 不断返回数列的下一个数,内存占用始终为常数


生成器


带有 yield 的函数在 Python 中被称之为 generator(生成器),几个例子说明下(还是用生成斐波那契数列说明)
可以看出代码3远没有代码1简洁,生成器(yield)既可以保持代码1的简洁性,又可以保持代码3的效果

def fab(max):
    n, a, b = 0, 0, 1
    while n < max:
        yield b
        a, b = b, a + b

        n = n + 1


>>> for n in fab(5):
    print n
     
1
1
2
3
5
yield 的作用就是把一个函数变成一个 generator。
带有 yield 的函数不再是一个普通函数,Python 解释器会将其视为一个 generator。
调用 fab(5) 不会执行 fab 函数,而是返回一个 iterable 对象!
在 for 循环执行时,每次循环都会执行 fab 函数内部的代码,执行到 yield b 时,fab 函数就返回一个迭代值,下次迭代时,代码从 yield b 的下一条语句继续执行,而函数的本地变量看起来和上次中断执行前是完全一样的,于是函数继续执行,直到再次遇到 yield。看起来就好像一个函数在正常执行的过程中被 yield 中断了数次,每次中断都会通过 yield 返回当前的迭代值。

如果在执行过程中 return,则直接抛出 StopIteration 终止迭代。


文件读取


def read_file(fpath): 
    BLOCK_SIZE = 1024 
    with open(fpath, 'rb') as f: 
        while True: 
            block = f.read(BLOCK_SIZE) 
            if block: 
                yield block 
            else: 
                return
如果直接对文件对象调用 read() 方法,会导致不可预测的内存占用。
好的方法是利用固定长度的缓冲区来不断读取文件内容。通过 yield,我们不再需要编写读文件的迭代类,就可以轻松实现文件读取。


类型判断


判断一个函数是否是一个特殊的 generator 函数
 >>> from inspect import isgeneratorfunction 
 >>> isgeneratorfunction(fab) 
 True
要注意区分 fab 和 fab(5),fab 是一个 generator function,而 fab(5) 是调用 fab 返回的一个 generator,好比类的定义和类的实例的区别:
 >>> import types 
 >>> isinstance(fab, types.GeneratorType) 
 False 
 >>> isinstance(fab(5), types.GeneratorType) 
 True
fab 是无法迭代的,而 fab(5) 是可迭代的:
 >>> from collections import Iterable 
 >>> isinstance(fab, Iterable) 
 False 
 >>> isinstance(fab(5), Iterable) 

 True


使用isinstance()判断一个对象是否是Iterable对象:
>>> from collections import Iterable
>>> isinstance([], Iterable)
True>>> isinstance({}, Iterable)
True>>> isinstance('abc', Iterable)
True>>> isinstance((x for x in range(10)), Iterable)
True>>> isinstance(100, Iterable)

False


使用isinstance()判断一个对象是否是Iterator对象:
>>> from collections import Iterator
>>> isinstance((x for x in range(10)), Iterator) #是(x for x in range(10))不是[x for x in range(10)]
True>>> isinstance([], Iterator)
False>>> isinstance({}, Iterator)
False>>> isinstance('abc', Iterator)

False



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值