迭代器(Iterator)
可以直接作用于for循环的对象,统称为可迭代对象:Iterable。
可以被next()函数调用并不断返回下一个值的对象,称为迭代器:Iterator。
Iterator对象表示的是一个数据流,Iterator对象可以被next()函数调用并不断返回下一个数据,直到没有数据时抛出StopIteration错误。可以把这个数据流看做是一个有序序列,但我们却不能提前知道序列的长度,只能不断通过next()函数实现按需计算下一个数据,所以Iterator的计算是惰性的,只有在需要返回下一个数据时它才会计算。
Iterator甚至可以表示一个无限大的数据流,例如全体自然数。而使用list是永远不可能存储全体自然数的。
迭代器仅仅在迭代到某个元素时才计算该元素,而在这之前或之后,元素可以不存在或者被销毁。这个特点使得它特别适合用于遍历一些巨大的或是无限的集合,比如几个G的文件,或是斐波那契数列等等。
与一般的序列类型(list, tuple等)有什么区别:
它一次只返回一个数据项,占用更少的内存。
但它需要记住当前的状态,以便返回下一数据项。它是一个有着next()方法的对象。
而序列类型则保存了所有的数据项,它们的访问是通过索引进行的。
对于原生支持随机访问的数据结构(如tuple、list),迭代器和经典for循环的索引访问相比并无优势,反而丢失了索引值(可以使用内建函数enumerate()找回这个索引值)。
迭代器有两个基本的方法
next方法:返回迭代器的下一个元素
__iter__方法:返回迭代器对象本身
迭代器:仅是一容器对象,它实现了迭代器协议。
下面用生成斐波那契数列为例子,说明为何用迭代器。
def fab(max):
n, a, b = 0, 0, 1
while n < max:
print b
a, b = b, a + b
n = n + 1
直接在函数fab(max)中用print打印会导致函数的可复用性变差,因为fab返回None。其他函数无法获得fab函数返回的数列。
def fab(max):
L = []
n, a, b = 0, 0, 1
while n < max:
L.append(b)
a, b = b, a + b
n = n + 1
return L
满足了可复用性的需求,但是占用了内存空间,最好不要。
class Fab(object):
def __init__(self, max):
self.max = max
self.n, self.a, self.b = 0, 0, 1
def __iter__(self):
return self
def next(self):
if self.n < self.max:
r = self.b
self.a, self.b = self.b, self.a + self.b
self.n = self.n + 1
return r
raise StopIteration
print key
1
1
2
3
5
Fabs 类通过 next() 不断返回数列的下一个数,内存占用始终为常数
生成器
带有 yield 的函数在 Python 中被称之为 generator(生成器),几个例子说明下(还是用生成斐波那契数列说明)
可以看出代码3远没有代码1简洁,生成器(yield)既可以保持代码1的简洁性,又可以保持代码3的效果
def fab(max):
n, a, b = 0, 0, 1
while n < max:
yield b
a, b = b, a + b
n = n + 1
print n
1
1
2
3
5
yield 的作用就是把一个函数变成一个 generator。
带有 yield 的函数不再是一个普通函数,Python 解释器会将其视为一个 generator。
调用 fab(5) 不会执行 fab 函数,而是返回一个 iterable 对象!
在 for 循环执行时,每次循环都会执行 fab 函数内部的代码,执行到 yield b 时,fab 函数就返回一个迭代值,下次迭代时,代码从 yield b 的下一条语句继续执行,而函数的本地变量看起来和上次中断执行前是完全一样的,于是函数继续执行,直到再次遇到 yield。看起来就好像一个函数在正常执行的过程中被 yield 中断了数次,每次中断都会通过 yield 返回当前的迭代值。
如果在执行过程中 return,则直接抛出 StopIteration 终止迭代。
文件读取
def read_file(fpath):
BLOCK_SIZE = 1024
with open(fpath, 'rb') as f:
while True:
block = f.read(BLOCK_SIZE)
if block:
yield block
else:
return
如果直接对文件对象调用 read() 方法,会导致不可预测的内存占用。
好的方法是利用固定长度的缓冲区来不断读取文件内容。通过 yield,我们不再需要编写读文件的迭代类,就可以轻松实现文件读取。
类型判断
判断一个函数是否是一个特殊的 generator 函数
>>> from inspect import isgeneratorfunction
>>> isgeneratorfunction(fab)
True
要注意区分 fab 和 fab(5),fab 是一个 generator function,而 fab(5) 是调用 fab 返回的一个 generator,好比类的定义和类的实例的区别:
>>> import types
>>> isinstance(fab, types.GeneratorType)
False
>>> isinstance(fab(5), types.GeneratorType)
True
fab 是无法迭代的,而 fab(5) 是可迭代的:
>>> from collections import Iterable
>>> isinstance(fab, Iterable)
False
>>> isinstance(fab(5), Iterable)
True
>>> from collections import Iterable
>>> isinstance([], Iterable)
True>>> isinstance({}, Iterable)
True>>> isinstance('abc', Iterable)
True>>> isinstance((x for x in range(10)), Iterable)
True>>> isinstance(100, Iterable)
False
>>> from collections import Iterator
>>> isinstance((x for x in range(10)), Iterator) #是(x for x in range(10))不是[x for x in range(10)]
True>>> isinstance([], Iterator)
False>>> isinstance({}, Iterator)
False>>> isinstance('abc', Iterator)
False