题意:
一排杂乱的牌,牌间距为1,每次移动只能将小的牌,移动到较大牌上,最终使得牌从小到大排好在一堆。问移动的最小距离。
题目:
蜘蛛牌是windows xp操作系统自带的一款纸牌游戏,游戏规则是这样的:只能将牌拖到比她大一的牌上面(A最小,K最大),如果拖动的牌上有按顺序排好的牌时,那么这些牌也跟着一起移动,游戏的目的是将所有的牌按同一花色从小到大排好,为了简单起见,我们的游戏只有同一花色的10张牌,从A到10,且随机的在一行上展开,编号从1到10,把第i号上的牌移到第j号牌上,移动距离为abs(i-j),现在你要做的是求出完成游戏的最小移动距离。
Input
第一个输入数据是T,表示数据的组数。
每组数据有一行,10个输入数据,数据的范围是[1,10],分别表示A到10,我们保证每组数据都是合法的。
Output
对应每组数据输出最小移动距离。
Sample Input
1
1 2 3 4 5 6 7 8 9 10
Sample Output
9
思路:
1.对移动牌的先后顺序进行枚举(全排列,当然要剪枝)
2.其实这道题很简单,但由于我忽略了,break导致错误,所以我来总结下此类搜索题的做法:找某种最优情况,(1)若为图一般用记忆化搜索(2)若为线性结构就基本上是全排列将所有情况排列出来,找出最优解。由于复杂度比较大,所以剪枝是比较重要的。
3 对本题来说,我们只能将较小牌放到较大牌上,若最优一定是某些段先结合最终得到一堆。所以类似全排列,若最优只能让较小牌到达离他最近的没有标记过的较大牌,故找到后需跳出循环。得到使某些段先结合的效果。
4 全排列的搜索模板
void dfs(int step)//step 表示当前在第几个位置
{
int i;
if(step==n+1)//如果step==n+1表示前n个数字已经放好
{
for(i=1;i<=n;i++)//输出一种全排列
printf("%d",a[i]);
printf("\n");
return;
}
for(i=1;i<=n;i++) //每次搜索都从1-n 一一尝试
{
if(book[i]==0)//判断次数字是否用过
{
a[step]=i;//存储当前位置的数字,以便满足条件输出
book[i]=1;//当前数字已用过,改变标志,以防重用
dfs(step+1);//放好当前位置数字之后,安排下一个数字
book[i]=0;//回溯,当满足一种全排列后,进行下一种尝试
}
}
return ;
}
dfs(1);
AC代码
#include<stdio.h>
#include<string.h>
#include<algorithm>
using namespace std;
const int inf=0x3f3f3f;
int a[20],ans,book[20];
void dfs(int step,int num)
{
if(step==9)
{
ans=num;
return ;
}
for(int i=1; i<10; i++)
if(!book[i])
{
book[i]=1;
for(int j=i+1; j<=10; j++)
if(!book[j]&&abs(a[j]-a[i])+num<ans)
{
dfs(step+1,num+abs(a[i]-a[j]));
break;/*从位置i走到j只能是i到没有标记过的第一个j(在递归过程中实现中间的某一段结合,再从头到尾结合)*/
}
book[i]=0;
}
return ;
}
int main()
{
int t;
scanf("%d",&t);
while(t--)
{
for(int i=1; i<=10; i++)
{
int c;
scanf("%d",&c);
a[c]=i;
}
ans=inf;
memset(book,0,sizeof(book));
dfs(0,0);
printf("%d\n",ans);
}
return 0;
}