题意:有a个村庄、b个城镇, 编号分别为:1—a , a+1——a+b 。 有双神奇的鞋,可以瞬时移动,可以使用k次,每次可以移动L , 但穿这双鞋的时候,不能经过城镇 , 问:从a+b 到 1 最短距离是多少?
刚开始看这个题时 , 一点思路都没有 , dp类型的题目做得太少了。
解法:进行状态压缩, 用点+使用鞋子的次数 , 来表示一个状态 , d[i][k] , 表示到 点 i 使用 k 次鞋子的最短距离是多少。
但要先进行初始化 , 求任意点之间不经过城镇的最短距离 , 用floyd算法 , 然后再用SPFA算法来找最短路。
代码:
#include <iostream>
#include <string.h>
#include <vector>
#include <queue>
#include <stdio.h>
using namespace std;
#define maxn 110
#define INF 0xffffff
struct edge
{
int to;
int d;
};
int a , b , m , l , k;
int d[maxn][20] , pre[maxn][20];
int dist[maxn][maxn];
void init()
{
memset(pre ,0 , sizeof(pre));
for(int i = 1; i <= a+b; i++)
{
for(int j = 1; j <= a+b; j++)
dist[i][j] = INF;
dist[i][i] = 0;
grap[i].clear();
}
}
void floyd()//求任意两点之间不经过城镇的最短距离
{
int i , j , k;
for(k = 1; k <= a; k++)
{
for(i = 1; i <= a+b; i++)
{
for(j = 1; j <= a+b; j++)
{
if(k == i || k == j) continue;
if(dist[i][k]+dist[k][j] < dist[i][j])
dist[i][j] = dist[i][k]+dist[k][j];
}
}
}
}
void spfa()
{
queue<int>q;
queue<int>t;
q.push(a+b) , t.push(0);
int i , j;
for(i = 1; i <= a+b; i++)
for(j = 0; j <= k; j++)
d[i][j] = INF;
for(i = 0; i <= k; i++)
d[a+b][i] = 0;
int u , v;
while(!q.empty())
{
u = q.front() ; q.pop();
v = t.front() ; t.pop();
//cout<<d[u][v]<<endl;
pre[u][v] = 0;
for(i = 1; i <= a+b; i++)
{
if(u == i) continue;
if(d[i][v] > d[u][v]+dist[u][i])
{
d[i][v] = d[u][v]+dist[u][i];
if(!pre[i][v])
{
q.push(i);
t.push(v);
pre[i][v] = 1;
}
}
if(dist[u][i] <= l && v < k && d[i][v+1] > d[u][v] )
{
d[i][v+1] = d[u][v];
if(!pre[i][v+1])
{
q.push(i);
t.push(v+1);
pre[i][v+1] = 1;
}
}
}
}
}
int main()
{
int t;
scanf("%d" , &t);
while(t--)
{
scanf("%d %d %d %d %d" , &a , &b , &m , &l , &k);
init();
int i , j , x , y , z;
for(i = 0; i < m; i++)
{
scanf("%d %d %d" , &x , &y , &z);
dist[x][y] = dist[y][x] = z;
}
floyd();
spfa();
int sum = INF;
for(i = 0; i <= k; i++)
sum = min(sum , d[1][i]);
printf("%d\n" , sum);
}
return 0;
}