前言
1、本文将基于JDK1.8进行编写。
2、转载请注明文章出处
一、HashMap介绍
HashMap是一种以键-值为存储方式的数据结构,在JDK1.8中,底层的数据结构为数组+链表+红黑树
,在链表长度超过8且table数组大小大于等于64
,则将链表转化为红黑树,当红黑树元素个数降为6时
又会将红黑树转化为链表,hashmap默认的大小是16,注意,当我们实例化一个hashmap时,不管有没有传参,这时,hashmap中的table数组始终为null,当我们put第一个元素时,会对hashmap进行一个扩容(resize),这个扩容操作会对hashmap进行初始化。
二、源码
1.hash方法
/*
将 hashCode 的高 16 位与 hashCode 进行异或运算,
主要是为了在 table 的 length 较小的时候,让高位也参与运算,
并且不会有太大的开销,目的是为了降低 hash 冲突的概率。
*/
static final int hash(Object key) {
//将key的hashcode值与key的hashcode值右移16位后的值进行异或
//得到hash值返回
int h;
return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16);
}
2.get方法
public V get(Object key) {
Node<K,V> e;
return (e = getNode(hash(key), key)) == null ? null : e.value;
}
final Node<K,V> getNode(int hash, Object key) {
Node<K,V>[] tab; Node<K,V> first, e; int n; K k;
/*
1.对table进行校验:table不为空 && table长度大于0 &&
table索引位置(使用table.length - 1和hash值进行位与运算)的节点不为空
*/
if ((tab = table) != null && (n = tab.length) > 0 &&
(first = tab[(n - 1) & hash]) != null) {
// 2.检查first节点的hash值和key是否和入参的一样,如果一样则first即为目标节点,直接返回first节点
if (first.hash == hash && // always check first node
((k = first.key) == key || (key != null && key.equals(k))))
return first;
// 3.如果first不是目标节点,并且first的next节点不为空则继续遍历
if ((e = first.next) != null) {
if (first instanceof TreeNode)
// 4.如果是红黑树节点,则调用红黑树的查找目标节点方法getTreeNode
return ((TreeNode<K,V>)first).getTreeNode(hash, key);
do {
// 5.执行链表节点的查找,向下遍历链表, 直至找到节点的key和入参的key相等时,返回该节点
if (e.hash == hash &&
((k = e.key) == key || (key != null && key.equals(k))))
return e;
} while ((e = e.next) != null);
}
}
// 6.找不到符合的返回空
return null;
}
2.put方法
public V put(K key, V value) {
return putVal(hash(key), key, value, false, true);
}
final V putVal(int hash, K key, V value, boolean onlyIfAbsent,
boolean evict) {
Node<K,V>[] tab; Node<K,V> p; int n, i;
// 1.校验table是否为空或者length等于0,如果是则调用resize方法进行初始化
if ((tab = table) == null || (n = tab.length) == 0)
n = (tab = resize()).length;
// 2.通过hash值计算索引位置,将该索引位置的头节点赋值给p,如果p为空则直接在该索引位置新增一个节点即可
if ((p = tab[i = (n - 1) & hash]) == null)
tab[i] = newNode(hash, key, value, null);
else {
// table表该索引位置不为空,则进行查找
Node<K,V> e; K k;
// 3.判断p节点的key和hash值是否跟传入的相等,如果相等, 则p节点即为要查找的目标节点,将p节点赋值给e节点
if (p.hash == hash &&
((k = p.key) == key || (key != null && key.equals(k))))
e = p;//这里赋值后出去后还要判断是否要覆盖老的值
// 4.判断p节点是否为TreeNode, 如果是则调用红黑树的putTreeVal方法查找目标节点
else if (p instanceof TreeNode)
e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);
else {
// 5.走到这代表p节点为普通链表节点,则调用普通的链表方法进行查找,使用binCount统计链表的节点数
for (int binCount = 0; ; ++binCount) {
// 6.如果p的next节点为空时,则代表找不到目标节点,则新增一个节点并插入链表尾部
if ((e = p.next) == null) {
p.next = newNode(hash, key, value, null);
// 7.校验节点数是否超过8个,如果超过则调用treeifyBin方法将链表节点转为红黑树节点,
// 减一是因为循环是从p节点的下一个节点开始的
if (binCount >= TREEIFY_THRESHOLD - 1)
treeifyBin(tab, hash);
break;
}
// 8.如果e节点存在hash值和key值都与传入的相同,则e节点即为目标节点,跳出循环
if (e.hash == hash &&
((k = e.key) == key || (key != null && key.equals(k))))
break;
p = e; // 将p指向下一个节点
}
}
/*9.如果e节点不为空,则代表目标节点存在,使用传入的value覆盖该节点的value,
并返回oldValue,onlyIfAbsent为true时,不用覆盖老的值
*/
if (e != null) {
V oldValue = e.value;
if (!onlyIfAbsent || oldValue == null)
e.value = value;
afterNodeAccess(e); // 用于LinkedHashMap
return oldValue;
}
}
++modCount;
// 10.如果插入节点后节点数超过阈值,则调用resize方法进行扩容
if (++size > threshold)
resize();
afterNodeInsertion(evict); // 用于LinkedHashMap
return null;
}
3.resize 方法
final Node<K,V>[] resize() {
Node<K,V>[] oldTab = table;
//这里的oldCap等于null对应了前面hashmap介绍时,put第一个元素resize的场景
int oldCap = (oldTab == null) ? 0 : oldTab.length;
int oldThr = threshold;
int newCap, newThr = 0;
// 1.老表的容量不为0,即老表不为空
if (oldCap > 0) {
// 1.1 判断老表的容量是否超过最大容量值:如果超过则将阈值设置为Integer.MAX_VALUE,并直接返回老表,
// 此时oldCap * 2比Integer.MAX_VALUE大,因此无法进行重新分布,只是单纯的将阈值扩容到最大
if (oldCap >= MAXIMUM_CAPACITY) {
threshold = Integer.MAX_VALUE;
return oldTab;
}
// 1.2 将newCap赋值为oldCap的2倍,如果newCap<最大容量并且oldCap>=16, 则将新阈值设置为原来的两倍
else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY &&
oldCap >= DEFAULT_INITIAL_CAPACITY)
newThr = oldThr << 1; // double threshold
}
// 2.如果老表的容量为0, 老表的阈值大于0, 是因为初始容量被放入阈值,则将新表的容量设置为老表的阈值
else if (oldThr > 0)
newCap = oldThr;
else {
// 3.老表的容量为0, 老表的阈值为0,这种情况是没有传初始容量的new方法创建的空表,将阈值和容量设置为默认值
newCap = DEFAULT_INITIAL_CAPACITY;
newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);
}
// 4.如果新表的阈值为0, 则通过新的容量*负载因子获得阈值
if (newThr == 0) {
float ft = (float)newCap * loadFactor;
newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ?
(int)ft : Integer.MAX_VALUE);
}
// 5.将当前阈值设置为刚计算出来的新的阈值,定义新表,容量为刚计算出来的新容量,将table设置为新定义的表。
threshold = newThr;
@SuppressWarnings({"rawtypes","unchecked"})
Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap];
table = newTab;
// 6.如果老表不为空,则需遍历所有节点,将节点赋值给新表
if (oldTab != null) {
for (int j = 0; j < oldCap; ++j) {
Node<K,V> e;
if ((e = oldTab[j]) != null) { // 将索引值为j的老表头节点赋值给e
oldTab[j] = null; // 将老表的节点设置为空, 以便垃圾收集器回收空间
// 7.如果e.next为空, 则代表老表的该位置只有1个节点,计算新表的索引位置, 直接将该节点放在该位置
if (e.next == null)
newTab[e.hash & (newCap - 1)] = e;
// 8.如果是红黑树节点,则进行红黑树的重hash分布(跟链表的hash分布基本相同)
else if (e instanceof TreeNode)
((TreeNode<K,V>)e).split(this, newTab, j, oldCap);
else { // preserve order
// 9.如果是普通的链表节点,则进行普通的重hash分布
Node<K,V> loHead = null, loTail = null; // 存储索引位置为:“原索引位置”的节点
Node<K,V> hiHead = null, hiTail = null; // 存储索引位置为:“原索引位置+oldCap”的节点
Node<K,V> next;
do {
next = e.next;
// 9.1 如果e的hash值与老表的容量进行与运算为0,则扩容后的索引位置跟老表的索引位置一样
if ((e.hash & oldCap) == 0) {
if (loTail == null) // 如果loTail为空, 代表该节点为第一个节点
loHead = e; // 则将loHead赋值为第一个节点
else
loTail.next = e; // 否则将节点添加在loTail后面
loTail = e; // 并将loTail赋值为新增的节点
}
// 9.2 如果e的hash值与老表的容量进行与运算为非0,则扩容后的索引位置为:老表的索引位置+oldCap
else {
if (hiTail == null) // 如果hiTail为空, 代表该节点为第一个节点
hiHead = e; // 则将hiHead赋值为第一个节点
else
hiTail.next = e; // 否则将节点添加在hiTail后面
hiTail = e; // 并将hiTail赋值为新增的节点
}
} while ((e = next) != null);
// 10.如果loTail不为空(说明老表的数据有分布到新表上“原索引位置”的节点),则将最后一个节点
// 的next设为空,并将新表上索引位置为“原索引位置”的节点设置为对应的头节点
if (loTail != null) {
loTail.next = null;
newTab[j] = loHead;
}
// 11.如果hiTail不为空(说明老表的数据有分布到新表上“原索引+oldCap位置”的节点),则将最后
// 一个节点的next设为空,并将新表上索引位置为“原索引+oldCap”的节点设置为对应的头节点
if (hiTail != null) {
hiTail.next = null;
newTab[j + oldCap] = hiHead;
}
}
}
}
}
// 12.返回新表
return newTab;
}
扩容后,节点重 hash 为什么只可能分布在 “原索引位置” 与 “原索引 + oldCap 位置” ?
扩容代码中,使用 e 节点的 hash 值跟 oldCap 进行位与运算,以此决定将节点分布到 “原索引位置” 或者 “原索引 + oldCap 位置” 上,这是为什么了?
假设老表的容量为 16,即 oldCap = 16,则新表容量为 16 * 2 = 32,假设节点 1 的 hash 值为:0000 0000 0000 0000 0000 1111 0000 1010,节点 2 的 hash 值为:0000 0000 0000 0000 0000 1111 0001 1010,则节点 1 和节点 2 在老表的索引位置计算如下图计算1,由于老表的长度限制,节点 1 和节点 2 的索引位置只取决于节点 hash 值的最后 4 位。
再看计算2,计算2为新表的索引计算,可以知道如果两个节点在老表的索引位置相同,则新表的索引位置只取决于节点hash值倒数第5位的值,而此位置的值刚好为老表的容量值 16,此时节点在新表的索引位置只有两种情况:“原索引位置” 和 “原索引 + oldCap位置”,在此例中即为 10 和 10 + 16 = 26。
由于结果只取决于节点 hash 值的倒数第 5 位,而此位置的值刚好为老表的容量值 16,因此此时新表的索引位置的计算可以替换为计算3,直接使用节点的 hash 值与老表的容量 16 进行位于运算,如果结果为 0 则该节点在新表的索引位置为原索引位置,否则该节点在新表的索引位置为 “原索引 + oldCap 位置”。
4.remove 方法
/**
* 移除某个节点
*/
public V remove(Object key) {
Node<K,V> e;
return (e = removeNode(hash(key), key, null, false, true)) == null ?
null : e.value;
}
final Node<K,V> removeNode(int hash, Object key, Object value,
boolean matchValue, boolean movable) {
Node<K,V>[] tab; Node<K,V> p; int n, index;
// 1.如果table不为空并且根据hash值计算出来的索引位置不为空, 将该位置的节点赋值给p
if ((tab = table) != null && (n = tab.length) > 0 &&
(p = tab[index = (n - 1) & hash]) != null) {
Node<K,V> node = null, e; K k; V v;
// 2.如果p的hash值和key都与入参的相同, 则p即为目标节点, 赋值给node
if (p.hash == hash &&
((k = p.key) == key || (key != null && key.equals(k))))
node = p;
else if ((e = p.next) != null) {
// 3.否则将p.next赋值给e,向下遍历节点
// 3.1 如果p是TreeNode则调用红黑树的方法查找节点
if (p instanceof TreeNode)
node = ((TreeNode<K,V>)p).getTreeNode(hash, key);
else {
// 3.2 否则,进行普通链表节点的查找
do {
// 当节点的hash值和key与传入的相同,则该节点即为目标节点
if (e.hash == hash &&
((k = e.key) == key ||
(key != null && key.equals(k)))) {
node = e; // 赋值给node, 并跳出循环
break;
}
p = e; // p节点赋值为本次结束的e,在下一次循环中,e为p的next节点
} while ((e = e.next) != null); // e指向下一个节点
}
}
// 4.如果node不为空(即根据传入key和hash值查找到目标节点),则进行移除操作
if (node != null && (!matchValue || (v = node.value) == value ||
(value != null && value.equals(v)))) {
// 4.1 如果是TreeNode则调用红黑树的移除方法
if (node instanceof TreeNode)
((TreeNode<K,V>)node).removeTreeNode(this, tab, movable);
// 4.2 如果node是该索引位置的头节点则直接将该索引位置的值赋值为node的next节点,
// “node == p”只会出现在node是头节点的时候,如果node不是头节点,则node为p的next节点
else if (node == p)
tab[index] = node.next;
// 4.3 否则将node的上一个节点的next属性设置为node的next节点,
// 即将node节点移除, 将node的上下节点进行关联(链表的移除)
else
p.next = node.next;
++modCount;
--size;
afterNodeRemoval(node); // 供LinkedHashMap使用
// 5.返回被移除的节点
return node;
}
}
return null;
}
5.tableforsize 方法
static final int tableSizeFor(int cap) {
//通过将n的二进制中最高位的1后面全部赋值1,然后返回结果+1
//n=cap-1主要是为了应对n本身就是2的N次方的情况
int n = cap - 1;
n |= n >>> 1;
n |= n >>> 2;
n |= n >>> 4;
n |= n >>> 8;
n |= n >>> 16;
return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
}
解释如下: