人工智能
文章平均质量分 67
知行流浪
不务正业的IT男
展开
-
贝叶斯估计详解
贝叶斯估计 贝叶斯估计:从参数的先验知识和样本出发。 不同于ML估计,不再把参数θ看成一个未知的确定变量,而是看成未知的随机变量,通过对第i类样本Di的观察,使概率密度分布P(Di|θ)转化为后验概率P(θ|Di),再求贝叶斯估计。 假设:将待估计的参数看作符合某种先验概率分布的随机变量。 基本原理:原创 2017-06-06 22:48:22 · 82262 阅读 · 5 评论 -
极大似然估计详解
极大似然估计 以前多次接触过极大似然估计,但一直都不太明白到底什么原理,最近在看贝叶斯分类,对极大似然估计有了新的认识,总结如下:贝叶斯决策 首先来看贝叶斯分类,我们都知道经典的贝叶斯公式: 其中:p(w):为先验概率,表示每种类别分布的概率;:类条件概率,表示在某种类别前提下,某事发生的概率;而为后验概率,表示某事发生原创 2017-05-28 00:55:10 · 386811 阅读 · 100 评论 -
Kmeans聚类算法
Kmeans聚类算法动态聚类算法 任务:是将数据集划分成一定数量的子集,例如将一个数据集划分成3、4个子集等。因此要划分成多少个子集往往要预先确定,或大致确定,当然这个子集数目在理想情况能体现数据集比较合理的划分。 要解决的问题是: 1、怎样才能知道该数据集应该划分的子集数目? 2、原创 2017-06-18 23:23:48 · 36399 阅读 · 2 评论 -
Parzen窗估计
原创 2017-07-08 18:08:31 · 3528 阅读 · 0 评论 -
概率密度函数估计
首先来看贝叶斯决策,贝叶斯分类器就是根据如下贝叶斯公式来设计的。最常用的就是比较后验概率的大小,进行类别决策。(也就是基于最小错误率的分类器,还有其他的比如基于最小风险,NP决策等)。 如何理解呢,说一个例子,比如一个班里面的男女比例为2:1,那么也就是说男生占2/3,女生占1/3。这个呢就叫做类别的先验概率(类别就是男生、女生),对应公式上的p(w)。接着假设这个班原创 2017-06-03 17:58:39 · 17673 阅读 · 0 评论 -
KNN分类器
KNN分类器 从测试样本x开始生长,不断扩大区域,直至包含进K个训练样本,把测试样本x的类别归于与之最近的k个训练样本中出现频率最大的类别。k近邻一般采用k为奇数,跟投票表决一样,避免因两种票数相等而难以决策。 其决策规则: 通俗易懂的规则是: 1.计算待分类数据和不同类中每一个数据的距离(欧氏或马氏)。原创 2017-06-13 23:49:05 · 2087 阅读 · 0 评论 -
K近邻估计
Kn-----近邻估计 KN近邻估计基本思想:预先确定n的某个函数Kn,然后再x点周围选择一个区域,调整区域体积大小,直至Kn个样本落入区域中。这些样本被称为点x的Kn个最近邻。 如果x点附近的密度比较高,则V的体积自然就相对较小,从而可以提升分辨力; 如果x点附近的密度比较低,则V的体积就较大,但一进入高密度区就会停止增长。原创 2017-06-13 23:08:40 · 12018 阅读 · 0 评论