大模型RAG高阶面试指南:目录大纲

大模型RAG高阶面试指南:目录大纲

前言

本书旨在为准备大模型RAG领域高阶职位的技术人员提供一套全面的面试准备指南。借鉴《百面深度学习》等系列书籍的风格,本书将核心知识点与大量模拟面试问答相结合,帮助读者系统性地梳理RAG的理论基础、核心技术、高级架构、评估优化及实际应用,提升应对技术面试的综合能力。

目录

第一章:RAG绪论

  • 1.1 RAG的定义、背景与核心思想
    • 什么是检索增强生成 (Retrieval Augmented Generation)?
    • 大模型面临哪些挑战,催生了RAG的出现?(如知识盲区、幻觉、时效性、特定领域适配)
    • RAG是如何解决这些挑战的?其核心思想是什么?
  • 1.2 为什么需要RAG?大模型的局限性与RAG的优势
    • 大模型“参数化知识”的不足之处体现在哪里?
    • RAG相对于纯粹的Prompt Engineering有哪些优势?(知识可控、实时性、可解释性、降低训练成本)
    • RAG的适用场景有哪些?
  • 1.3 RAG与相关技术的对比
    • RAG与传统信息检索 (Information Retrieval, IR) 的关系与区别是什么?
    • RAG与知识图谱 (Knowledge Graph, KG) 各自的优劣势?它们能否结合?如何结合?(GraphRAG)
    • RAG与微调 (Fine-tuning) 的权衡考量是什么?何时选择RAG,何时选择微调,何时结合使用?
  • 1.4 RAG的发展简史与里程碑模型
    • 早期将检索融入生成模型的研究有哪些?
    • Dense Passage Retrieval (DPR) 等经典检索模型在RAG中的地位?
    • 如何理解RAIT (Retrieval Augmented Instruction Tuning) 等概念?
    • RAG的演进路径:从Naive RAG到Advanced RAG、Agentic RAG等

第二章:RAG的核心原理与基本架构

  • 2.1 RAG的基本流程概览
    • 用户查询 (Query) 输入后,RAG系统经历了哪些主要步骤?
    • 请画出或描述一个典型的RAG流程图。
  • 2.2 检索(Retrieval):核心目标与关键要素
    • 检索阶段的目标是什么?
    • 高质量检索对于RAG效果的重要性体现在哪里?
    • 检索阶段的关键组件有哪些?(索引构建、查询编码、相似度搜索)
  • 2.3 增强(Augmentation):如何有效结合检索到的知识
    • 增强阶段的任务是什么?
    • 检索结果如何被传递给大模型?(通常通过Prompt)
    • 如何设计Prompt来指导大模型有效利用检索内容?
  • 2.4 生成(Generation):大型语言模型在RAG中的角色
    • LLM在RAG中扮演什么角色?(基于检索到的上下文和原始查询生成答案)
    • LLM的生成能力(如理解、推理、组织语言)如何影响最终RAG效果?
    • 选择不同LLM对生成效果有何影响?
  • 2.5 典型的RAG流程图与组件交互机制
    • 详细阐述用户查询如何流经各个组件(查询编码器 -> 向量数据库/索引 -> 检索器 -> 增强模块/Prompt构建 -> LLM -> 最终答案)。
    • 各组件之间的数据传递格式是什么?

第三章:RAG关键技术深度剖析:检索器(Retriever)

  • 3.1 数据预处理与分块(Chunking Strategies)
    • 为什么需要对原始文档进行分块?
    • 常见的分块策略有哪些?(固定大小、按句子/段落、按标题/Markdown结构、递归分块、内容感知分块)
    • 各种分块策略的优缺点、适用场景及面临的挑战?
    • 分块大小 (Chunk Size) 和重叠大小 (Overlap Size) 对检索效果和生成质量有何影响?如何权衡选择?
  • 3.2 向量嵌入模型(Embedding Models)
    • 什么是向量嵌入?它在RAG检索中的作用是什么?
    • 介绍几种常用的通用向量嵌入模型及其特点(如Sentence-BERT系列、OpenAI Ada、BGE、M3E、Cohere Embed等)。
    • 不同的嵌入模型在语义理解能力、计算效率、支持语言等方面有何差异?如何进行选型?
    • 是否需要针对特定领域或任务对嵌入模型进行微调?如何微调?
    • 如何评估嵌入模型的质量?(如MTEB排行榜)
  • 3.3 向量数据库与索引(Vector Databases & Indexing)
    • 为什么需要向量数据库?它的核心功能是什么?
    • 介绍几种主流的向量数据库/库(如FAISS, Annoy, NMSLIB, Milvus, Pinecone, Weaviate, ChromaDB, Qdrant等)及其核心特性。
    • 向量索引的目的是什么?常见的索引类型有哪些?(如Flat, IVF - Inverted File Index, HNSW - Hierarchical Navigable Small Worlds, Product Quantization等)
    • 请解释HNSW索引的原理及其在近似最近邻搜索 (Approximate Nearest Neighbor Search, ANNS) 中的优势。
    • 不同索引策略在搜索速度、召回率、内存占用、构建时间等方面的权衡是什么?如何根据实际需求选择索引?
  • 3.4 查询处理与转换(Query Processing & Transformation)
    • 为什么需要对用户原始查询进行处理?
    • 什么是查询扩展 (Query Expansion)?有哪些方法?(如关键词扩展、同义词、利用LLM生成相关查询)
    • 什么是查询重写 (Query Rewriting)?为什么需要?(如处理指代消解、改写成更适合检索的形式)
    • 什么是HyDE (Hypothetical Document Embeddings)?它的工作原理是什么?如何提升检索效果?
    • 其他查询转换技术(如子查询生成 Sub-queries Generation)
  • 3.5 相似度计算与Top-K检索
    • 常用的向量相似度计算方法有哪些?(如余弦相似度 Cosine Similarity, 内积 Dot Product, 欧氏距离 Euclidean Distance)
    • 不同相似度计算方法的特点和适用性?
    • 什么是Top-K检索?如何选择合适的K值?K值选择的权衡考量?
  • 3.6 重排序(Re-ranking)
    • 为什么在向量检索后需要进行重排序?(向量相似度可能无法完全捕捉语义相关性或上下文关联)
    • 重排序的工作原理是什么?
    • 常用的重排序模型或方法有哪些?(如基于交叉编码器 Cross-encoders, Listwise/Pairwise Ranking Models, 利用LLM进行重排序)
    • 基于交叉编码器的重排序模型(如BERT, DeBERTa, MiniLM等)是如何工作的?与双塔模型 (Bi-encoders) 有何区别?各自的优缺点?

第四章:RAG关键技术深度剖析:生成器(Generator)与增强(Augmentation)

  • 4.1 大型语言模型(LLM)在RAG中的应用
    • 如何选择用于RAG的LLM?(模型规模、上下文窗口大小、指令遵循能力、领域适应性、成本、推理速度)
    • 不同规模的LLM(如7B, 13B, 70B)在RAG任务中的表现有何差异?
  • 4.2 Prompt工程在RAG中的最佳实践
    • 如何构建包含检索结果的Prompt?Prompt的基本结构是什么?
    • 如何在Prompt中清晰地指示LLM使用检索到的信息?(如使用分隔符、明确指令)
    • 如何通过Prompt引导LLM生成忠实于检索结果的答案?(如强调“只根据提供的文档回答”)
    • Prompt中的温度 (Temperature) 等参数对生成结果有何影响?如何选择?
    • Few-shot或Chain-of-Thought等Prompting技术能否应用于RAG?如何应用?
  • 4.3 上下文管理与融合策略
    • 如何将多个检索到的文档片段有效地融入到LLM的上下文窗口中?
    • 当检索到的内容超出LLM的上下文窗口限制时,有哪些处理策略?(如滑动窗口、摘要、关键句抽取、RAG-Fusion)
    • 如何处理检索到的多个文档片段之间的冲突或冗余信息?
    • 注意力机制(Attention Mechanism)在LLM融合检索信息过程中扮演什么角色?
  • 4.4 RAG的微调(Fine-tuning RAG)
    • RAG系统是否需要微调?微调的目标是什么?
    • 端到端微调 (End-to-end Fine-tuning) RAG模型的原理是什么?(如REALM, RAG模型本身)其优缺点?
    • 组件微调 (Component Fine-tuning) 指的是什么?如何分别微调检索器和生成器以优化RAG效果?
    • 针对特定任务(如问答、摘要)微调RAG组件的策略?
    • Adapter, LoRA等参数高效微调 (Parameter-Efficient Fine-Tuning, PEFT) 技术能否应用于RAG?如何应用?

第五章:高级RAG架构与范式

  • 5.1 Naive RAG (基础RAG)
    • Naïve RAG的流程是什么?
    • Naïve RAG的主要局限性有哪些?(如对原始查询敏感、无法处理复杂推理、上下文利用效率低)
  • 5.2 Advanced RAG (aRAG)
    • aRAG是如何克服Naïve RAG局限性的?其核心思想是什么?
    • Pre-retrieval优化:
      • 查询改写 (Query Rewriting) 如何帮助检索?
      • 查询路由 (Query Routing) 指的是什么?如何根据查询类型选择不同的检索策略或知识源?
      • 文档预处理优化(如摘要、元信息增强)
    • Post-retrieval优化:
      • 信息压缩 (Context Compression) 的技术有哪些?(如LLM重写、Embedding模型选择重要句子、RIF等)其目的何在?
      • 重排序 (Re-ranking) 在aRAG中的重要性?
      • 检索结果过滤 (Filtering) 的策略?(如基于相关性阈值、多样性考虑)
      • 冗余或冲突信息处理策略
  • 5.3 Iterative RAG / Self-Correcting RAG
    • 什么是迭代检索?为什么需要多次检索?
    • Self-RAG, CRAG等模型是如何实现自我修正和迭代优化的?
    • 这些模型中的“置信度评估”和“反思机制”是如何工作的?
    • 迭代RAG适用于哪些场景?(如需要多步推理或信息聚合的问题)
  • 5.4 Recursive RAG / Hierarchical RAG
    • 如何利用递归或分层检索来处理复杂问题和多跳推理 (Multi-hop Reasoning)?
    • 例如,先检索概述性信息,再根据概述信息生成子问题进行二次检索。请描述这一流程。
    • Recursive RAG的应用案例?
  • 5.5 GraphRAG (利用知识图谱增强RAG)
    • 知识图谱如何与RAG结合?结合方式有哪些?(如将KG作为检索源、利用KG进行查询扩展、利用KG结构辅助生成)
    • GraphRAG相对于纯文本RAG的优势是什么?
    • 实现GraphRAG面临的挑战?
  • 5.6 Multimodal RAG (处理多模态信息)
    • 什么是多模态RAG?它如何处理包含文本、图片、视频等多种模态的查询和文档?
    • 多模态嵌入模型 (Multimodal Embedding Models) 在其中的作用?
    • 多模态RAG的应用场景?面临的技术挑战?
  • 5.7 Agentic RAG (结合Agent能力的RAG系统)
    • 如何将大型语言模型作为Agent与RAG系统结合?
    • Agent如何利用RAG工具来执行复杂任务?(如规划、工具使用、反思)
    • ReAct (Reasoning and Acting) 框架如何应用于Agentic RAG?
    • Agentic RAG相比传统RAG的优势?未来的发展方向?

第六章:RAG系统的评估与优化

  • 6.1 常用评估指标
    • 检索阶段评估指标:
      • 召回率 (Recall) 和精确率 (Precision) 在Top-K检索中的定义与计算?
      • 平均倒数排名 (Mean Reciprocal Rank, MRR)?
      • 归一化折损累计增益 (Normalized Discounted Cumulative Gain, NDCG)?
    • 生成阶段评估指标:
      • 传统的文本生成指标(BLEU, ROUGE, Perplexity)在RAG评估中的局限性?
      • 如何评估生成答案的“相关性” (Relevance)?
      • 如何评估生成答案的“忠实度” (Faithfulness / Factuality),即是否基于检索到的事实?
      • 如何评估生成答案的“无害性” (Harmlessness)?
    • 端到端RAG评估指标:
      • 除了单独评估检索和生成,如何从用户角度端到端评估RAG系统的整体性能?(如用户满意度、任务完成率)
  • 6.2 端到端评估框架
    • 介绍几种主流的RAG端到端评估框架(如RAGAS, ARES, RGB)。
    • 这些框架如何自动化或半自动化评估RAG的关键维度(如Faithfulness, Answer Relevance, Context Relevance, Context Recall)?
    • 如何构建RAG评估数据集?
  • 6.3 常见问题诊断与调优技巧
    • 如何诊断RAG系统中的问题?(如检索不相关、检索丢失关键信息、生成幻觉、答案不忠实、答案不完整、生成速度慢)
    • 针对“检索不相关”或“低召回率”问题,有哪些可能的调优方向?(如优化分块、更换嵌入模型、优化索引、改进查询处理、增加重排序)
    • 针对“生成幻觉”或“答案不忠实”问题,有哪些调优策略?(如改进Prompt、限制LLM生成范围、优化检索结果质量、后处理校验)
    • 如何优化RAG系统的延迟和吞吐量?
    • 参数调优的实践经验?(如K值、Prompt模板、模型温度)
    • A/B测试在RAG优化中的应用?

第七章:RAG在工业界的应用案例

  • 7.1 智能问答系统
    • 应用于企业内部知识库问答(如Confluence, SharePoint文档)。
    • 应用于客户服务问答机器人。
    • 应用于法律、医疗、金融等垂直领域的专业问答。
    • 如何处理FAQ与基于文档的问答结合?
  • 7.2 个性化推荐系统
    • 如何利用RAG检索用户兴趣或历史行为相关信息,增强推荐理由生成?
    • 如何利用RAG为用户提供基于其具体需求的商品或内容推荐解释?
  • 7.3 内容创作辅助
    • 利用RAG检索背景资料、事实细节来辅助新闻报道、博客文章、研究报告的撰写。
    • 如何利用RAG确保生成内容的准确性和信息来源可追溯性?
  • 7.4 代码生成与解释
    • 利用RAG检索代码库、API文档、技术论坛信息来生成代码片段或解释现有代码。
    • 如何构建代码领域的RAG系统?(如代码分块、代码嵌入模型)

第八章:RAG面临的挑战与未来展望

  • 8.1 知识更新与时效性
    • 如何高效、低成本地更新RAG系统中的知识库?(增量更新、实时更新策略)
    • 如何确保RAG系统能够访问并使用最新的信息?
  • 8.2 处理复杂推理与多跳问题
    • 当前的RAG在处理需要多步逻辑推理或跨越多文档信息的问题时有哪些不足?
    • 未来的RAG架构如何增强复杂推理能力?(如结合Agent、符号推理、更复杂的迭代/递归策略)
  • 8.3 可解释性与可信度
    • 如何提高RAG生成答案的可解释性?(如引用来源文档、高亮关键片段)
    • 如何构建更可信赖的RAG系统,减少幻觉和不忠实回答?
  • 8.4 成本与效率
    • 构建、维护和运行RAG系统的成本构成?(数据处理、模型推理、向量数据库)
    • 如何优化RAG系统的整体效率?(如模型蒸馏、硬件加速、索引优化)
  • 8.5 多模态信息的融合
    • 如何更有效地融合和利用不同模态(文本、图像、音频、视频)的信息进行RAG?
    • 统一的多模态表示学习是未来的方向吗?
  • 8.6 个性化与自适应RAG
    • 如何构建能够理解用户个性化需求或上下文,并自适应调整检索和生成策略的RAG系统?
  • 8.7 RAG与Agent的深度融合
    • Agentic RAG的未来会如何发展?RAG如何成为Agent执行任务的核心能力?
    • Agent的规划和反思能力如何进一步提升RAG的效果和鲁棒性?

第九章:RAG实践与部署考量

  • 9.1 技术选型与架构设计
    • 在实际项目中,如何根据需求(数据规模、查询量、延迟要求、预算)选择合适的技术栈?(开源 vs 商业、云服务 vs 自建)
    • RAG系统的微服务架构设计?(检索服务、生成服务、知识库服务)
    • 数据管道 (Data Pipeline) 的设计(从数据源到向量数据库)
  • 9.2 数据安全与隐私保护
    • 处理敏感或私有数据时的RAG安全策略?(如数据加密、访问控制、数据脱敏)
    • 如何在RAG系统中实现用户级或权限级的访问控制,确保用户只能检索其有权访问的数据?
  • 9.3 系统监控与维护
    • RAG系统上线后,需要监控哪些关键指标?(如查询量、延迟、错误率、检索指标、生成指标)
    • 如何进行持续集成/持续部署 (CI/CD) 和模型版本管理?
    • 应对系统故障和性能下降的预案?
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值