DeepSeek-R1-Lite VS OpenAI GPT-4o

DeepSeek-R1-Lite VS OpenAI GPT-4o

原创 李玉侠 李玉侠 2024年11月21日 13:11 广东

昨天,DeepSeek在公众号发文自豪地宣布,其全新研发的推理模型 DeepSeek-R1-Lite 预览版已正式上线。用户只需登录官方网页(chat.deepseek.com),即可一键开启与 R1-Lite 预览版模型的超强推理对话体验。

图片

为了更好地比较 DeepSeek-R1-Lite 和 OpenAI GPT-4o 在不同方面的表现和特点,以下是作者登入chat.deepseek.com与 DeepSeek对话,让 DeepSeek制作的对表格:

图片

图片

总结:这个表格提供了一个初步的比较框架,帮助我们理解 DeepSeek-R1-Lite 和 OpenAI GPT-4o 在不同方面的可能差异。具体的性能和优势还需要通过详细的基准测试和实际应用验证来确定。

最后介绍一下:DeepSeek-R1-Lite

强化学习训练,思维链长达数万字

DeepSeek R1 系列模型采用了先进的强化学习技术进行训练,使得推理过程不仅包含大量的反思和验证,而且思维链长度可达数万字。这一特性使得该系列模型在数学、代码以及各种复杂逻辑推理任务上,取得了与知名模型 o1-preview 相媲美的推理效果,并为用户呈现了 o1 未曾公开的完整思考过程。

深度思考,展现潜力

图片

DeepSeek-R1-Lite 的推理过程不仅长,而且包含了大量的反思和验证。模型在数学竞赛上的得分与测试所允许思考的长度紧密相关。红色实线展示了模型所能达到的准确率与所给定的推理长度呈正相关。相比传统的多次采样+投票(Majority Voting)方法,模型思维链长度的增加展现出了更高的效率。

全面上线,尝鲜体验

用户只需登录 chat.deepseek.com,在输入框中选择“深度思考”模式,即可开启与 DeepSeek-R1-Lite 预览版的对话。该模式专门针对数学、代码等各类复杂逻辑推理问题而设计,相比普通的简单问题,能够提供更加全面、清晰、思路严谨的优质解答,充分展现出较长思维链的更多优势。

迭代开发与未来展望

DeepSeek-R1-Lite 目前仍处于迭代开发阶段,仅支持网页使用,暂不支持 API 调用。此外,由于当前使用的是较小的基座模型,因此无法完全释放长思维链的潜力。然而,DeepSeek 团队正在持续迭代推理系列模型,并计划在将来推出正式版 DeepSeek-R1 模型。届时,正式版模型将完全开源,并公开技术报告,同时部署 API 服务,以满足更多用户的需求。

本文参考:

DeepSeek 推理模型预览版上线,解密 o1 推理过程一文,大家了解详情还请直接登入DeepSeek官方公众号,进一步学习,

### 集成GPT4All与DeepSeek-R1 API的方法 为了实现GPT4All与DeepSeek-R1 API之间的集成,主要涉及两个部分的工作:一是准备并运行GPT4All模型;二是通过API请求的方式调用DeepSeek-R1的服务。具体来说: #### 准备环境 确保安装了必要的依赖库来支持GPT4All的本地部署以及HTTP客户端用于发送API请求到DeepSeek-R1。 对于Python环境而言,可以利用`pip`工具安装所需的包: ```bash pip install gpt4all requests ``` #### 加载GPT4All模型 加载预训练好的GPT4All模型实例以便后续处理输入数据。 ```python from gpt4all import GPT4All model = GPT4All('path_to_model') ``` 此处`'path_to_model'`应替换为实际下载或指定路径中的模型文件位置[^1]。 #### 构建向DeepSeek-R1发起请求的功能 定义一个函数用来封装对DeepSeek-R1 API的具体调用逻辑,包括设置URL、构建payload(如果有的话)、配置headers等参数,并最终解析返回的结果。 ```python import json import requests def call_deepseek_api(prompt_text): url = "https://api.deepseek-r1.example.com/v1/endpoint" payload = { 'prompt': prompt_text, # Add other required fields here as per the documentation of DeepSeek-R1. } headers = {'Content-Type': 'application/json', 'Authorization': 'Bearer YOUR_API_KEY'} response = requests.post(url, data=json.dumps(payload), headers=headers) if response.status_code == 200: result = response.json() return result['response'] else: raise Exception(f"Failed to get a valid response from server: {response.text}") ``` 请注意,在上述代码片段中,`url`, `YOUR_API_KEY` 和可能存在的其他字段都需要按照官方文档的要求进行适当调整。 #### 结合两者工作流 最后一步就是将这两个组件结合起来形成完整的交互流程。当接收到用户的查询时,先经过GPT4All初步生成回复草案,再传递给DeepSeek-R1做进一步优化或者获取更专业的领域知识补充。 ```python user_input = input("Enter your query:") # Generate initial response using GPT4All initial_response = model.generate(user_input) print("Initial Response:", initial_response) try: final_answer = call_deepseek_api(initial_response) print("Final Answer after refinement by DeepSeek-R1:", final_answer) except Exception as e: print(e) ``` 此过程展示了如何有效地连接起两套不同的自然语言处理服务,从而提供更加精准的回答体验。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值