证明圆周角定理

1.圆周角和圆心角的概念

         圆周角是指角的顶点在圆周上,角的两边与圆周相交的角,如下图:

        在图中\(\angle D\),\(\angle C\)和\(\angle F\)就是圆周角。

        圆心角是指顶点在圆心上,两条边与圆周相交的角,如:

 如上图\(\angle BAE\)就是圆心角。

2.证明圆周角定理

        圆周角定理为同一个弧对应的圆周角是圆心角的\(\frac{1}{2}\)。在下图中弧CBE对应的公式为:\(\angle D=\frac{1}{2} \angle A\)

        接下来来证明圆周角定理,分为三种情况

情况一:

        圆周角的一边和圆心角的一边处于同一条直线上:

\(\because \angle CAD+\angle C+\angle D=180^{\circ } \)

 \(\therefore \angle CAD=180^{\circ }-\angle C-\angle D\)

\(\therefore \angle BAD=180^{\circ }-\angle CAD=180^{\circ}-\left (  180^{\circ}-\angle C - \angle D\right ) \)

\(\therefore \angle BAD=\angle C + \angle D\)

\(又\because \angle C = \angle D\)

\(\therefore \frac{1}{2} \angle BAD=\angle C\)

\(这就证明了\)

$$\angle C=\frac{1}{2}\angle A$$

情况二:

        圆周角和圆心角的任何一边都不重合,如下:

                

我们发现,可以沿着两个角的顶点做一条线,即连接点D和点A,如下: 

 就把它分成两个情况一,便可以轻松证明。

情况三:

        圆周角顶点在圆心角以外,如图:

我们可以连接EA并延长到圆周上并命名与圆周的交点为F,如:

 \(根据情况一,可以证明\frac{\angle FEC}{\angle FAC}=\frac{\angle FED}{\angle FAD} =\frac{1}{2}\)

\(又因\angle CAD = \angle FAD - \angle FAC,\angle CED = \angle FED-\angle FEC\)

\(则,\frac { \angle CED} { \angle CAD}=\frac{\angle FED-\angle FEC}{\angle FAD-\angle FAC}= \frac{\angle FED-\angle FEC}{2\left ( \angle FED-\angle FEC \right ) } = \frac{1}{2}\)

\(即可证明{\color{Red} {\angle CAD = \frac{1}{2}\angle CED}}\)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值