1.圆周角和圆心角的概念
圆周角是指角的顶点在圆周上,角的两边与圆周相交的角,如下图:
在图中\(\angle D\),\(\angle C\)和\(\angle F\)就是圆周角。
圆心角是指顶点在圆心上,两条边与圆周相交的角,如:
如上图\(\angle BAE\)就是圆心角。
2.证明圆周角定理
圆周角定理为同一个弧对应的圆周角是圆心角的\(\frac{1}{2}\)。在下图中弧CBE对应的公式为:\(\angle D=\frac{1}{2} \angle A\)
接下来来证明圆周角定理,分为三种情况
情况一:
圆周角的一边和圆心角的一边处于同一条直线上:
\(\because \angle CAD+\angle C+\angle D=180^{\circ } \)
\(\therefore \angle CAD=180^{\circ }-\angle C-\angle D\)
\(\therefore \angle BAD=180^{\circ }-\angle CAD=180^{\circ}-\left ( 180^{\circ}-\angle C - \angle D\right ) \)
\(\therefore \angle BAD=\angle C + \angle D\)
\(又\because \angle C = \angle D\)
\(\therefore \frac{1}{2} \angle BAD=\angle C\)
\(这就证明了\)
$$\angle C=\frac{1}{2}\angle A$$
情况二:
圆周角和圆心角的任何一边都不重合,如下:
我们发现,可以沿着两个角的顶点做一条线,即连接点D和点A,如下:
就把它分成两个情况一,便可以轻松证明。
情况三:
圆周角顶点在圆心角以外,如图:
我们可以连接EA并延长到圆周上并命名与圆周的交点为F,如:
\(根据情况一,可以证明\frac{\angle FEC}{\angle FAC}=\frac{\angle FED}{\angle FAD} =\frac{1}{2}\)
\(又因\angle CAD = \angle FAD - \angle FAC,\angle CED = \angle FED-\angle FEC\)
\(则,\frac { \angle CED} { \angle CAD}=\frac{\angle FED-\angle FEC}{\angle FAD-\angle FAC}= \frac{\angle FED-\angle FEC}{2\left ( \angle FED-\angle FEC \right ) } = \frac{1}{2}\)
\(即可证明{\color{Red} {\angle CAD = \frac{1}{2}\angle CED}}\)