圆周角定理 Inscribed Angle Theorem

欢迎关注更多精彩
关注我,学习常用算法与数据结构,一题多解,降维打击。

定理 Inscribed Angle Theorem

c为圆C的圆且半径大于0。p, q为圆上不同的两点。则对于任意圆上1点r(除p, q外) ∠ p r q m o d    π = 1 2 ∠ p c q ( 当 r 与 c 在 p q 异侧时,取外角,比如下图中的 t 点 ) \angle prq \mod \pi = \frac 1 2 \angle pcq (当r与c在 pq 异侧时,取外角,比如下图中的t点) prqmodπ=21pcq(rcpq异侧时,取外角,比如下图中的t).
在这里插入图片描述

证明

当pq经过c时,对角为直角,显然是成立的。

当r点与c在pq同侧时(c在三角形prq内部)

可以作辅助线如下图,

在这里插入图片描述

要证明结论 1 : α + β = 1 2 δ 要证明 结论1:\alpha + \beta = \frac 1 2 \delta 要证明结论1α+β=21δ

由三角形内角和可知 2 ∗ ( α + β + γ ) = π        ( 1 ) 由三角形内角和可知 2*( \alpha + \beta + \gamma) = \pi \ \ \ \ \ \ (1) 由三角形内角和可知2(α+β+γ)=π      (1)

由三角形内角和可知 2 ∗ γ + δ = π        ( 2 ) 由三角形内角和可知 2* \gamma + \delta = \pi \ \ \ \ \ \ (2) 由三角形内角和可知2γ+δ=π      (2)

组合 1 , 2 式子可得: δ = 2 ∗ ( α + β ) , 结论 1 得证 组合1,2式子可得:\delta = 2*( \alpha + \beta ), 结论1得证 组合12式子可得:δ=2(α+β),结论1得证

当r点与c在pq同侧时(c不在三角形prq内部),由圆上的弦在同侧的圆周角相同也可以得到结论1。

当r点与c在pq异侧时,可作辅助线如下图:
在这里插入图片描述
r’ 在圆上可以知, θ + ϕ = π , ϕ 对应的外角为 π + θ \theta+\phi = \pi, \phi 对应的外角 为\pi+\theta θ+ϕ=π,ϕ对应的外角为π+θ

由结论 1 可知, ( π + θ ) m o d    π = θ = 1 2 ∠ p c q 由结论1可知,(\pi+\theta) \mod \pi = \theta =\frac 1 2 \angle pcq 由结论1可知,(π+θ)modπ=θ=21pcq

综上,定理得证。


本人码农,希望通过自己的分享,让大家更容易学懂计算机知识。创作不易,帮忙点击公众号的链接。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值