圆周角定理 Inscribed Angle Theorem

欢迎关注更多精彩
关注我,学习常用算法与数据结构,一题多解,降维打击。

定理 Inscribed Angle Theorem

c为圆C的圆且半径大于0。p, q为圆上不同的两点。则对于任意圆上1点r(除p, q外) ∠ p r q m o d    π = 1 2 ∠ p c q ( 当 r 与 c 在 p q 异侧时,取外角,比如下图中的 t 点 ) \angle prq \mod \pi = \frac 1 2 \angle pcq (当r与c在 pq 异侧时,取外角,比如下图中的t点) prqmodπ=21pcq(rcpq异侧时,取外角,比如下图中的

要绘制一个圆形内的内切三角形,你可以使用Python的matplotlib库来创建图形。首先,我们需要导入必要的模块,然后定义圆心、半径以及三角形的一个顶点,接着我们可以计算第三个顶点(即内切点),最后绘制出圆和三角形。 以下是一个简单的例子: ```python import matplotlib.pyplot as plt import numpy as np # 圆的参数 radius = 5 center = (0, 0) # 圆心坐标 # 假设我们有一个已知三角形的一边,比如边长为a,与x轴成60度角 side_length = 7 angle_degrees = 60 # 将角度转换为弧度 angle_radians = np.radians(angle_degrees) # 计算另一个顶点 opposite_side = side_length * np.tan(angle_radians) adjacent_side = side_length / np.cos(angle_radians) vertex = center + adjacent_side * (np.array([np.cos(angle_radians), np.sin(angle_radians)])) # 创建一个新的图形 fig, ax = plt.subplots() # 绘制圆 circle = plt.Circle(center, radius, fill=False, color='black') ax.add_patch(circle) # 绘制三角形 ax.plot([center[0], vertex[0]], [center[1], vertex[1]], 'k-', linewidth=2) ax.plot(vertex[0], vertex[1], 'ro') # 在顶点上标记一个小红点 # 添加标题和坐标轴标签 plt.title("Circle with an Inscribed Triangle") ax.set_xlabel('X-axis') ax.set_ylabel('Y-axis') # 显示图形 plt.show() ``` 这个代码会生成一个圆形及其内切的等腰三角形。如果你想根据其他条件或形状调整,只需改变相应的参数即可。如果你有任何疑问,请告诉我!
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值