欢迎关注更多精彩
关注我,学习常用算法与数据结构,一题多解,降维打击。
定理 Inscribed Angle Theorem
c为圆C的圆且半径大于0。p, q为圆上不同的两点。则对于任意圆上1点r(除p, q外)
∠
p
r
q
m
o
d
π
=
1
2
∠
p
c
q
(
当
r
与
c
在
p
q
异侧时,取外角,比如下图中的
t
点
)
\angle prq \mod \pi = \frac 1 2 \angle pcq (当r与c在 pq 异侧时,取外角,比如下图中的t点)
∠prqmodπ=21∠pcq(当r与c在pq异侧时,取外角,比如下图中的t点).
证明
当pq经过c时,对角为直角,显然是成立的。
当r点与c在pq同侧时(c在三角形prq内部)
可以作辅助线如下图,
要证明结论 1 : α + β = 1 2 δ 要证明 结论1:\alpha + \beta = \frac 1 2 \delta 要证明结论1:α+β=21δ
由三角形内角和可知 2 ∗ ( α + β + γ ) = π ( 1 ) 由三角形内角和可知 2*( \alpha + \beta + \gamma) = \pi \ \ \ \ \ \ (1) 由三角形内角和可知2∗(α+β+γ)=π (1)
由三角形内角和可知 2 ∗ γ + δ = π ( 2 ) 由三角形内角和可知 2* \gamma + \delta = \pi \ \ \ \ \ \ (2) 由三角形内角和可知2∗γ+δ=π (2)
组合 1 , 2 式子可得: δ = 2 ∗ ( α + β ) , 结论 1 得证 组合1,2式子可得:\delta = 2*( \alpha + \beta ), 结论1得证 组合1,2式子可得:δ=2∗(α+β),结论1得证
当r点与c在pq同侧时(c不在三角形prq内部),由圆上的弦在同侧的圆周角相同也可以得到结论1。
当r点与c在pq异侧时,可作辅助线如下图:
r’ 在圆上可以知,
θ
+
ϕ
=
π
,
ϕ
对应的外角为
π
+
θ
\theta+\phi = \pi, \phi 对应的外角 为\pi+\theta
θ+ϕ=π,ϕ对应的外角为π+θ
由结论 1 可知, ( π + θ ) m o d π = θ = 1 2 ∠ p c q 由结论1可知,(\pi+\theta) \mod \pi = \theta =\frac 1 2 \angle pcq 由结论1可知,(π+θ)modπ=θ=21∠pcq
综上,定理得证。
本人码农,希望通过自己的分享,让大家更容易学懂计算机知识。创作不易,帮忙点击公众号的链接。