RAG技术全面解析:从原理到实践中的20个关键问题

一、基础概念与原理

1. RAG是什么?与传统生成模型的区别是什么?

RAG定义

检索增强生成(Retrieval-Augmented Generation, RAG) 是一种结合检索技术与生成模型的技术。其核心流程是:

  1. 用户提问后,系统从外部知识库(如文档、数据库)中检索相关文档片段;
  2. 将检索结果作为上下文输入大语言模型(LLM);
  3. LLM基于上下文生成最终答案。
与传统生成模型的对比
维度 传统生成模型(如GPT-3) RAG模型
知识来源 训练时的静态知识 动态检索外部知识库
实时性 无法更新(需重新训练) 支持实时更新知识库
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

大F的智能小课

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值