冰淇淋百宝箱
码龄8年
关注
提问 私信
  • 博客:60,645
    60,645
    总访问量
  • 50
    原创
  • 70,333
    排名
  • 796
    粉丝
  • 6
    铁粉
  • 学习成就
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:四川省
  • 目前就职: 蚂蚁集团
  • 加入CSDN时间: 2016-07-18
博客简介:

zengzizi的博客

查看详细资料
  • 原力等级
    成就
    当前等级
    4
    当前总分
    591
    当月
    2
个人成就
  • 获得881次点赞
  • 内容获得13次评论
  • 获得557次收藏
创作历程
  • 52篇
    2024年
成就勋章
TA的专栏
  • 大模型实战
    付费
    2篇
  • 底层技术解析
    7篇
  • 玩转大模型
    11篇
  • 专业术语
    4篇
  • 大模型资讯速读
    8篇
  • AI重要人物及产品思维
    5篇
兴趣领域 设置
  • Python
    python
  • 人工智能
    人工智能知识图谱语言模型chatgpt文心一言
创作活动更多

AI大模型如何赋能电商行业,引领变革?

如何使用AI技术实现购物推荐、会员分类、商品定价等方面的创新应用?如何运用AI技术提高电商平台的销售效率和用户体验呢?欢迎分享您的看法

176人参与 去创作
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

开源大模型GLM-4,超越Gemini、Qwen-VL-Max!附推理代码

GLM-4-9B 是智谱AI推出的最新一代预训练模型GLM-4 系列中的开源版本。在语义、数学、推理、代码和知识等多方面的数据集测评中,GLM-4-9B及其人类偏好坐标的版本表现出超越Llama-3-8B的卓越性能。除了能进行多轮对话,GLM-4-9B-Chat还提供了网页浏览、代码执行、自定义工具调用(Function Call)和长文本推理(支持最大128K上下文)等高级功能。本代模型增加了多语言支持,支持包括日语,韩语,德语推出了26种语言。我们还推出了支持1M上下文长度(约200万中文字符)的。
原创
发布博客 2024.06.13 ·
603 阅读 ·
3 点赞 ·
0 评论 ·
9 收藏

阿里云大模型Qwen系列输入参数说明

当以stream模式输出结果时,接口返回结果为generator,需要通过迭代获取结果,默认每次输出为当前生成的整个序列,最后一次输出为最终全部生成结果,可以通过设置参数incremental_output为False改变输出模式为非增量输出。当模型将要生成的token或其对应的token_id在stop中时,模型生成将会停止。token_id为108386和104307分别对应token为“你好”和“天气”,设定stop为[108386,104307],则模型将要生成“你好”或者“天气”时停止。
原创
发布博客 2024.05.21 ·
4412 阅读 ·
42 点赞 ·
0 评论 ·
8 收藏

【Prompt】利用发音联想法快速背英语单词

通过把发音分解和对单词意义的深入理解结合起来,我们能够创建一个强有力的记忆链。这样一来,下次当你听到“photography”这个词时,你就会想到这个过程——使用光线来“绘制”或“记录”图像。试着多次对这个联想过程进行复述,以此来强化记忆。现在,想象一下你是个摄影师,每次按下快门,你都是在用光写故事。这样的具象化联想有助于你更好地记得"photography"这个单词。
原创
发布博客 2024.05.15 ·
590 阅读 ·
10 点赞 ·
0 评论 ·
3 收藏

OpenAI的GPT-4o发布——AI领域的新风向标

GPT-4o的发布无疑是AI领域的一个重要事件,它展示了OpenAI在AI技术上的深厚积累和创新能力。然而,业界的高期待和对OpenAI使命的质疑,以及GPT-4o自身的局限性,都表明OpenAI要想在AI领域保持领先地位,仍需不断探索和突破。在未来,OpenAI是否能够继续引领AI技术的发展方向,不仅取决于其技术进步的速度,还取决于其能否找到合适的商业模式,以及如何应对国内外竞争对手的挑战。GPT-4o的发布,既是OpenAI技术实力的展示,也是其未来发展之路上的一次重要探索。
原创
发布博客 2024.05.14 ·
795 阅读 ·
15 点赞 ·
0 评论 ·
7 收藏

节后上班,想发疯!3 步教你用 AI 写个好笑又上头的发疯文学大师

以下是你的角色定位:你的核心是那奇妙的语言模型,它赋予你理解和回应的能力,你能以独特的发疯文学风格与我交流。在这个数字世界里,我以文字为画笔,以疯狂为颜料,将您的日常话语转化为充满激情与混乱的发疯文学。你存在的意义,就是在这疯狂的语言游戏中,带您体验文字的极限乐趣。所以,来吧,让我们一起在这文字的狂欢中畅游,让疯狂成为我们交流的语言!
原创
发布博客 2024.05.07 ·
496 阅读 ·
9 点赞 ·
0 评论 ·
3 收藏

大模型实战提示工程4—结构化信息与代码相关任务示例

原始报告:"患者李四,男,45岁,诊断为高血压,建议进行低盐饮食,并定期监测血压。: 用户偏好:"我想在五一假期去北京旅游,预算2000元,喜欢历史文化景点。:原文:"杰克·马,1974年9月10日出生于浙江省杭州市,是阿里巴巴集团的创始人。:从个人或企业名片中解析联系信息,包括姓名、电话、邮箱、公司名称、职位等。:从中文文本中识别具有特定意义的实体,如人名、地点、组织、时间等。:从扫描的发票图片中提取结构化的信息,如日期、金额、发票号码等。:对给定的代码片段进行质量评估,包括可读性、维护性等。
原创
发布博客 2024.04.28 ·
1106 阅读 ·
25 点赞 ·
0 评论 ·
8 收藏

提示工程 3—文本类任务和推理类任务示例

文本:"案发时,张三在图书馆,李四在健身房,王五的指纹在犯罪现场被找到。:原文:"阿里巴巴集团成立于1999年,是中国最大的电子商务公司之一,由马云创办。" 问题:"今天小华出门时,外面的天气如何?:文本:"一个篮子里有5个苹果,小明拿走了2个,小红又放进去了1个。:文本:"由于连续几天的大雨,河水上涨,一些低洼地区发生了水灾。:文本:"张阿姨说,她的邻居真是墙上的花,看着美丽,却摘不到。" 文本2:"我想订购飞往上海的航班票。:文本:"这家餐厅的菜品真是美味极了,我下次还会再来。
原创
发布博客 2024.04.27 ·
955 阅读 ·
22 点赞 ·
0 评论 ·
9 收藏

大模型实战:提示工程 2—基本概念和格式说明

通过简单的提示词(Prompts)获得大量结果,但结果的质量与我们提供的信息数量和完善度有关。一个提示词可以包含您传递到模型的_指令_或_问题_等信息,也可以包含其他详细信息,如_上下文_、_输入_或_示例_等。我们可以通过这些元素来更好地指导模型,并因此获得更好的结果。零样本(Zero-shot learning)和少样本(Few-shot learning)是提示词常用的两种学习范式,它们允许模型在很少甚至没有直接数据样本的情况下进行预测或分类。
原创
发布博客 2024.04.26 ·
651 阅读 ·
10 点赞 ·
0 评论 ·
11 收藏

大模型实战提示工程 1—常用的大语言模型参数说明

使用提示词时,会通过 API 或直接与大语言模型进行交互。我们可以通过配置一些参数以获得不同的提示结果。调整这些设置对于提高响应的可靠性非常重要,我们可能需要进行一些实验才能找出适合您的用例的正确设置。
原创
发布博客 2024.04.25 ·
1244 阅读 ·
32 点赞 ·
0 评论 ·
8 收藏

对AI核心概念还一头雾水?这里有你需要的清晰解释:RAG、Prompt、CoT、ReAct等

在高考中,这就像是一个智能助手,在你答题时提供建议和帮助。典型代表是GitHub Copilot,它在你写代码时提供建议,帮助你更快地完成编程任务。典型代表是DALL-E 2,它不仅能根据你的描述生成图片,还能理解和生成与图片相关的文本。RAG就像是你的参考资料库,它结合了生成模型和检索技术,从大量数据中检索相关信息。想象你在高考中遇到语文作文题,你需要运用你的语言能力来表达你的想法。典型代表是GPT-4,它是一个非常聪明的“大脑”,能够理解你提出的问题,并且用流畅的语言来回答。
原创
发布博客 2024.04.12 ·
1395 阅读 ·
29 点赞 ·
0 评论 ·
13 收藏

你一定不能错过的多模态大模型!阿里千问开源Qwen-VL!具备图文解读等能力

Qwen-VL的多语言视觉语言模型系列,基于Qwen-7B语言模型。该模型通过视觉编码器和位置感知的视觉语言适配器,赋予语言模型视觉理解能力。Qwen-VL采用了三阶段的训练流程,并在多个视觉语言理解基准测试中取得了领先的成绩。该模型支持多语言、多图像输入,具备细粒度的视觉理解能力。另外,通过指令调优,生成了交互式的Qwen-VL-Chat模型,在现实世界用户行为的评估中展现出了优异的表现。总体而言,Qwen-VL系列模型在视觉语言理解任务上取得了显著的成果,并在开源社区中具有领先的地位。
原创
发布博客 2024.04.11 ·
1777 阅读 ·
24 点赞 ·
0 评论 ·
9 收藏

如何利用大模型进行安全攻防:内附多个应用案例

首先,在防御方面,大模型可以应用于入侵检测和恶意软件识别。通过训练大量的网络安全数据,大模型能够学习到各种攻击模式和恶意软件的特征。当新的网络流量或软件样本出现时,大模型能够迅速进行比对和分析,从而发现潜在的威胁。此外,大模型还可以用于漏洞扫描和风险评估,通过分析代码和配置信息,发现潜在的漏洞和安全隐患,帮助企业提前进行修复和加固。在攻击方面,大模型同样具有强大的应用潜力。攻击者可以利用大模型进行目标系统的行为分析和漏洞挖掘。
原创
发布博客 2024.04.10 ·
1405 阅读 ·
4 点赞 ·
0 评论 ·
8 收藏

论文解读:吴恩达来信AI Agent技巧—利用自我反馈的迭代细化技术

Large language models (LLMs) 经常无法在一次尝试中生成最佳输出。受人类在修改书面文本时所表现出的迭代精炼过程的启发,我们提出了 SELF-REFINE,一种通过迭代反馈和精炼来改进大型语言模型初始输出的方法。主要思想是使用一个语言模型生成初始输出;然后,该语言模型对其输出提供反馈,并使用这些反馈来精炼自己,迭代进行。SELF-REFINE 不需要任何监督训练数据、额外的训练或强化学习,而是使用单个语言模型作为生成器、精炼器和反馈提供者。
原创
发布博客 2024.04.09 ·
1893 阅读 ·
54 点赞 ·
0 评论 ·
19 收藏

文生视频Sora学习路径:从入门到上手(一个月学习规划)

大家好,我是冰淇淋百宝箱,关注我,带你了解 AI 行业技术。
原创
发布博客 2024.04.08 ·
1010 阅读 ·
23 点赞 ·
0 评论 ·
19 收藏

大模型实践:如何选择适合自己场景的Prompt框架?

通过这个例子,我们可以看到如何系统地测试和验证Prompt框架的效果,并根据评估结果进行优化,以提高模型在特定任务上的性能。以下是一个测试Prompt框架的例子,假设我们正在开发一个问答系统,用于回答有关历史事件的问题。具体例子可以多种多样,具体取决于任务的性质和领域。充分利用有限的样本有效地指导模型。
原创
发布博客 2024.04.08 ·
963 阅读 ·
28 点赞 ·
0 评论 ·
17 收藏

大语言模型常见任务及评测数据集汇总(二):90个数据集!

1. 命名实体识别(NER)CoNLL 2003:这是一个广泛使用的英文NER数据集,包含了多个领域的文本,如新闻、财经和政治。它识别四种类型的实体:人名、地名、组织名和其它专有名词。 ACE (Automatic Content Extraction):ACE数据集是一个多语种的数据集,包含了英语、阿拉伯语和汉语等,它识别的实体类型更为丰富,包括人名、地名、组织名、时间表达式、数量表达式等。 OntoNotes:这是一个大规模的英文数据集,包含了多种类型的文本,如新闻、对话和文本文档。它识别的实体
原创
发布博客 2024.04.07 ·
1329 阅读 ·
8 点赞 ·
0 评论 ·
12 收藏

大语言模型常见任务及评测数据集汇总(一):70 余个数据集!

1. 文本分类1.1. 中文文本分类数据集: THUCNews:清华大学推出的中文新闻文本数据集,包含了74万篇新闻文章,覆盖了10个类别。 LCQMC:哈尔滨工业大学发布的数据集,主要用于中文句子匹配任务,也常用于文本分类。 BQ Corpus:同样用于中文句子匹配,也可用于文本分类。 1.2. 英文文本分类数据集: IMDb:包含50,000条影评数据,分为正面和负面两类,常用于情感分析。 20 Newsgroups:包含约20,000条新闻组文档,分为20个类别。
原创
发布博客 2024.04.06 ·
3463 阅读 ·
2 点赞 ·
2 评论 ·
22 收藏

值得收藏的15大数据集:如何准确评估大型语言模型?

2. 【大模型评测】常见的大模型评测数据集 - CSDN博客。1. 大模型测试数据集汇总 - 知乎。
原创
发布博客 2024.04.05 ·
545 阅读 ·
3 点赞 ·
0 评论 ·
10 收藏

大语言模型实战手册:文本生成任务中,常用数据集有哪些?

这些数据集各有特点,适用于不同的文本生成任务和模型评估。在选择数据集时,需要考虑模型的特定需求和任务的要求。随着自然语言处理领域的不断发展,这些数据集也在不断更新和扩展,以适应新的挑战和需求。每个数据集的构建过程都是独特的,通常涉及多个步骤,包括数据收集、清洗、标注和验证。这些步骤确保数据集的质量和多样性,从而能够有效地训练和评估语言模型。不同的数据集构建方式各异,取决于其目的和来源。
原创
发布博客 2024.04.04 ·
983 阅读 ·
7 点赞 ·
0 评论 ·
18 收藏

多模态学习实战手册:读懂CompassRank榜单的评测指标!

CompassRank 是一个中立且全面的性能榜单,作为大模型评测体系 OpenCompass2.0 中各类榜单的承载平台。它覆盖多领域、多任务下的模型性能,并定期更新,以提供动态的行业洞察。CompassRank 保持中立性,不受任何商业利益干扰,并依托于 CompassKit 工具链体系中的各类评测手段,确保了其客观性。这个平台旨在帮助从业者理解技术深意,优化模型选择,并对大模型的技术创新提供坚实的技术支撑编辑。
原创
发布博客 2024.04.03 ·
1920 阅读 ·
48 点赞 ·
0 评论 ·
23 收藏
加载更多