基于卷积神经网络的猫狗识别

本文介绍了一个基于TensorFlow和Keras的猫狗分类实验,通过Vgg19网络模型完成分类任务。讨论了过拟合、数据增强的概念,并展示了如何应用图像生成器进行训练。实验结果显示,数据增强有助于防止过拟合,提高模型泛化能力。
摘要由CSDN通过智能技术生成

任务要求

  1. 按照 https://github.com/fchollet/deep-learning-with-python-notebooks/blob/master/5.2-using-convnets-with-small-datasets.ipynb, 利用TensorFlow和Keras,自己搭建卷积神经网络完成狗猫数据集的分类实验;将关键步骤用汉语注释出来。解释什么是overfit(过拟合)?什么是数据增强?如果单独只做数据增强,精确率提高了多少?然后再添加的dropout层,是什么实际效果?
  2. 用Vgg19网络模型完成狗猫分类,写出实验结果;

猫狗识别

1.准备数据集
kaggle网站的数据集下载猫狗数据集,解压后如图所示:
在这里插入图片描述
在trian文件夹中有许多猫狗的照片:
在这里插入图片描述
2.正式进行猫狗识别
图片分类并打印出结果,实现代码如下:

import os, shutil
# The path to the directory where the original
# dataset was uncompressed(原始数据集路径)
original_dataset_dir = 'C:/Users/23226/Desktop/kaggle_Dog&Cat/train/train'

# The directory where we will
# store our smaller dataset(目标存储路径)
base_dir = 'C:/Users/23226/Desktop/kaggle_Dog&Cat/result'
os.mkdir(base_dir)

# Directories for our training,
# validation and test splits
train_dir = os.path.join(base_dir, 'train')
os.mkdir(train_dir)
validation_dir = os.path.join(base_dir, 'validation')
os.mkdir(validation_dir)
test_dir = os.path.join(base_dir, 'test')
os.mkdir(test_dir)

# Directory with our training cat pictures
train_cats_dir = os.path.join(train_dir, 'cats')
os.mkdir(train_cats_dir)

# Directory with our training dog pictures
train_dogs_dir = os.path.join(train_dir, 'dogs')
os.mkdir(train_dogs_dir)

# Directory with our validation cat pictures
validation_cats_dir = os.path.join(validation_dir, 'cats')
os.mkdir(validation_cats_dir)

# Directory with our validation dog pictures
validation_dogs_dir = os.path.join(validation_dir, 'dogs')
os.mkdir(validation_dogs_dir)

# Directory with our validation cat pictures
test_cats_dir = os.path.join(test_dir, 'cats')
os.mkdir(test_cats_dir)

# Directory with our validation dog pictures
test_dogs_dir = os.path.join(test_dir, 'dogs')
os.mkdir(test_dogs_dir)

# Copy first 1000 cat images to train_cats_dir
fnames = ['cat.{}.jpg'.format(i) for i in range(1000)]
for fname in fnames:
    src = os.path.join(original_dataset_dir, fname)
    dst = os.path.join(train_cats_dir, fname)
    shutil.copyfile(src, dst)

# Copy next 500 cat images to validation_cats_dir
fnames = ['cat.{}.jpg'.format(i) for i in range(1000, 1500)]
for fname in fnames:
    src = os.path.join(original_dataset_dir, fname)
    dst = os.path.join(validation_cats_dir<
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值