4、技能习得:实践对感知 - 行动关系的改变

技能习得:实践对感知 - 行动关系的改变

1. 技能习得与感知 - 行动关系概述

长期以来,通过实践或经验获得熟练的运动行为一直是备受关注的话题,既涉及运动学习的理论研究,也关乎实践训练的高效组织。然而,感知与行动之间的关系并未得到学习研究者的充分重视。多数运动学习的研究者主要关注特定运动任务的练习,聚焦于练习过程中各种变量(如练习安排、指导方式等)对运动行为变化的影响,很少探讨这些变化背后的控制方式和机制,以及实践对感知 - 行动关系的具体影响。

不过,相关研究表明,一些实验者有意或无意地提供了有助于理解运动学习中感知 - 行动关系的信息。实践会在多个方面改变、强化甚至消除感知与行动之间的关系,主要体现在以下三个方面:
- 实践会改变支持熟练行为的感觉信息类型。
- 实践能增强个体检测自身错误并在后续尝试中进行纠正的能力。
- 学习者在实践中似乎能够获得一种能力,使运动表现不干扰其他信息处理活动,即实现自动化。

2. 实践中信息来源的转变

2.1 向动觉和本体感觉控制的转变

威廉·詹姆斯(William James)认为,实践会改变运动的控制过程,使行为减少对外部信息源的依赖,因为外部信息需要更多注意力;相反,行为会更多地由本体感觉信息控制,这种信息更具“反射性”且无需太多注意力。尽管许多作者持有类似观点,但目前表明实践会增加本体感觉作用的证据仅局限于高度依赖反馈的特定任务。

例如,亚当斯(Adams)在定位任务中的研究发现,学习过程中所获得的反馈“质量”对表现有显著影响,这表明随着实践的增加,本体感觉尤其是视觉的使用会增多。弗莱什曼(Fleishman)和里奇(Rich)对双手协

基于径向基函数神经网络RBFNN的自适应滑模控制学习(Matlab代码实现)内容概要:本文介绍了基于径向基函数神经网络(RBFNN)的自适应滑模控制方法,并提供了相应的Matlab代码实现。该方法结合了RBF神经网络的非线性逼近能力和滑模控制的强鲁棒性,用于解决复杂系统的控制问题,尤其适用于存在不确定性和外部干扰的动态系统。文中详细阐述了控制算法的设计思路、RBFNN的结构与权重更新机制、滑模面的构建以及自适应律的推导过程,并通过Matlab仿真验证了所提方法的有效性和稳定性。此外,文档还列举了大量相关的科研方向和技术应用,涵盖智能优化算法、机器学习、电力系统、路径规划等多个领域,展示了该技术的广泛应用前景。; 适合人群:具备一定自动控制理论基础和Matlab编程能力的研究生、科研人员及工程技术人员,特别是从事智能控制、非线性系统控制及相关领域的研究人员; 使用场景及目标:①学习和掌握RBF神经网络与滑模控制相结合的自适应控制策略设计方法;②应用于电机控制、机器人轨迹跟踪、电力电子系统等存在模型不确定性或外界扰动的实际控制系统中,提升控制精度与鲁棒性; 阅读建议:建议读者结合提供的Matlab代码进行仿真实践,深入理解算法实现细节,同时可参考文中提及的相关技术方向拓展研究思路,注重理论分析与仿真验证相结合。
先展示下效果 https://pan.quark.cn/s/a4b39357ea24 本项目是本人参加BAT等其他公司电话、现场面试之后总结出来的针对Java面试的知识点或真题,每个点或题目都是在面试中被问过的。 除开知识点,一定要准备好以下套路: 个人介绍,需要准备一个1分钟的介绍,包括学习经历、工作经历、项目经历、个人优势、一句话总结。 一定要自己背得滚瓜烂熟,张口就来 抽象概念,当面试官问你是如何理解多线程的时候,你要知道从定义、来源、实现、问题、优化、应用方面系统性地回答 项目强化,至少与知识点的比例是五五开,所以必须针对简历中的两个以上的项目,形成包括【架构和实现细节】,【正常流程和异常流程的处理】,【难点+坑+复盘优化】三位一体的组合拳 压力练习,面试的时候难免紧张,可能会严重影响发挥,通过平时多找机会参与交流分享,或找人做压力面试来改善 表达练习,表达能力非常影响在面试中的表现,能否简练地将答案告诉面试官,可以通过给自己讲解的方式刻意练习 重点针对,面试官会针对简历提问,所以请针对简历上写的所有技术点进行重点准备 Java基础 JVM原理 集合 多线程 IO 问题排查 Web框架、数据库 Spring MySQL Redis 通用基础 操作系统 网络通信协议 排序算法 常用设计模式 从URL到看到网页的过程 分布式 CAP理论 锁 事务 消息队列 协调器 ID生成方式 一致性hash 限流 微服务 微服务介绍 服务发现 API网关 服务容错保护 服务配置中心 算法 数组-快速排序-第k大个数 数组-对撞指针-最大蓄水 数组-滑动窗口-最小连续子数组 数组-归并排序-合并有序数组 数组-顺时针打印矩形 数组-24点游戏 链表-链表反转-链表相加 链表-...
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值