2、元组、点和向量的基础与应用

元组、点和向量的基础与应用

在图形渲染的世界里,我们常常会遇到一个独自置于有着方格墙壁和地板房间中的球体。它反射着上方灯泡发出的光,几乎反射出了周围的一切,包括相机后方的方格墙、上方的天花板,甚至(如果你仔细观察)它自身的影子。如此迷人的场景,你是否也想亲手渲染出这样的画面呢?其实,在掌握一定知识后,你就能用自己编写的软件实现这样的渲染。

元组的概念

元组是一个有序的列表,比如数字列表。为了更好地理解,我们通过一个例子来说明。假设你在公园散步,向前走了 4 米,突然地面塌陷,你下落了 4 米,然后发现左边有一个神秘隧道,你又爬了 3 米,在那里发现了一个装满金币的宝箱。如果将最初的 4 米看作 x 方向,下落的 4 米看作负 y 方向,隧道里的 3 米看作 z 方向,那么这三个距离就可以用 (4, -4, 3) 来表示,这就是一个元组,并且这个特定的元组也被称为点,因为它代表了空间中的一个点。

在坐标系统方面,当 y 轴向上,x 轴向右时,z 轴可以指向你或者远离你。这里采用的是左手坐标系。你可以伸出左手,拇指指向 +x 方向,手指指向 +y 方向,当你将手指向手掌卷曲时,手指卷曲的方向就是 z 轴的方向。不过,很多网站、文档、文章、书籍和 API 使用的是右手坐标系,其中 z 轴指向你。这两种方法都没有问题,选择左手坐标系是因为一些流行的渲染器,如皮克斯的 RenderMan 系统、Unity 游戏引擎和开源的 POV - Ray 光线追踪器都在使用它。

方向的表示方式也是类似的。当你站在空宝箱旁边,想知道回到起点的方向,你可以在脑海中画一个箭头,从当前位置指向起点。这个箭头在 x 方向为 -4 米,y 方向为 4 米,z 方向为 -3 米,即 (-4, 4

基于径向基函数神经网络RBFNN的自适应滑模控制学习(Matlab代码实现)内容概要:本文介绍了基于径向基函数神经网络(RBFNN)的自适应滑模控制方法,并提供了相应的Matlab代码实现。该方法结合了RBF神经网络的非线性逼近能力滑模控制的强鲁棒性,用于解决复杂系统的控制问题,尤其适用于存在不确定性外部干扰的动态系统。文中详细阐述了控制算法的设计思路、RBFNN的结构权重更新机制、滑模面的构建以及自适应律的推导过程,并通过Matlab仿真验证了所提方法的有效性稳定性。此外,文档还列举了大量相关的科研方向技术应用,涵盖智能优化算法、机器学习、电力系统、路径规划等多个领域,展示了该技术的广泛应用前景。; 适合人群:具备一定自动控制理论基础Matlab编程能力的研究生、科研人员及工程技术人员,特别是从事智能控制、非线性系统控制及相关领域的研究人员; 使用场景及目标:①学习掌握RBF神经网络滑模控制相结合的自适应控制策略设计方法;②应用于电机控制、机器人轨迹跟踪、电力电子系统等存在模型不确定性或外界扰动的实际控制系统中,提升控制精度鲁棒性; 阅读建议:建议读者结合提供的Matlab代码进行仿真实践,深入理解算法实现细节,同时可参考文中提及的相关技术方向拓展研究思路,注重理论分析仿真验证相结合。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值