洛谷1965 转圈游戏

这道数论问题描述了一群小伙伴按顺时针方向围坐并按照特定规则移动位置的游戏。在10^k轮后,需要计算初始为x号的小伙伴所处的位置。解决方法涉及快速幂和取模运算,适用于处理大规模数据,如n < 1,000,000,k < 10^9的情况。" 111338411,10294304,"R语言正态性检验:Kolmogorov-Smirnov, Lilliefors, Anderson-Darling, Shapiro-Wilk

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

原题地址

https://www.luogu.org/problem/show?pid=1965

数论 快速幂 取模

题目描述

n 个小伙伴(编号从 0 到 n-1)围坐一圈玩游戏。按照顺时针方向给 n 个位置编号,从0 到 n-1。最初,第 0 号小伙伴在第 0 号位置,第 1 号小伙伴在第 1 号位置,……,依此类推。游戏规则如下:每一轮第 0 号位置上的小伙伴顺时针走到第 m 号位置,第 1 号位置小伙伴走到第 m+1 号位置,……,依此类推,第n − m号位置上的小伙伴走到第 0 号位置,第n-m+1 号位置上的小伙伴走到第 1 号位置,……,第 n-1 号位置上的小伙伴顺时针走到第m-1 号位置。

现在,一共进行了 10^k轮,请问 x 号小伙伴最后走到了第几号位置。

输入输出格式

输入格式:

输入文件名为 circle.in。

输入共 1 行,包含 4 个整数 n、m、k、x,每两个整数之间用一个空格隔开。

输出格式:

输出文件名为 circle.out。

输出共 1 行,包含 1 个整数,表示 10

k 轮后 x 号小伙伴所在的位置编号。

输入输出样例

输入样例#1

10 3 4 5

输出样例#1

5

说明

对于 30%的数据,0 < k < 7;

对于 80%的数据,0 < k < 10^7;

对于 100%的数据,1 <n < 1,000,000,0 < m < n,1 ≤ x ≤ n,0 < k < 10^9

解题思路

一个简单的取模运算问题,快速幂打熟的话几分钟就能搞定……

#include<iostream>
#include<algorithm>
#include<cmath>
#include<cstdio>
using namespace std;
 
long long n,m,k,x;
long long power(long long x,long long y)
{
     longlong re=1,i=y;
     for(;i;i=i>>1,x=x*x%n)
     if(i&1) re=(re*x)%n;
     returnre;
}
 
int main()
{
     scanf("%lld%lld%lld%lld",&n,&m,&k,&x);
     longlong ans;
     ans=(x+m*power(10,k))%n;
     printf("%lld",ans);
     return0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值