模板--------LCA

本文介绍了一种使用倍增法实现的最近公共祖先(LCA)在线查询算法。该算法首先进行预处理建立倍增跳跃表,然后通过二进制提升找到两个节点的最近公共祖先。适用于解决树形结构中频繁出现的LCA问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

倍增法求LCA,在线算法:

#include<iostream>
#include<algorithm>
#include<cstdio>
#include<cmath>
#include<cstring>
using namespace std;

struct mc
{
	int x,y,ne;
}e[1000010];
int num=0,v[500010];
void put(int x,int y)
{
	num++;
	e[num].x=x;
	e[num].y=y;
	e[num].ne=v[x];
	v[x]=num;
}

int f[500010][21],d[500010];
void dfs(int x,int father,int deep)
{
	f[x][0]=father;
	d[x]=deep;
	for (int i=v[x];i;i=e[i].ne)
	{
		int y=e[i].y;
		if(y!=father)
		dfs(y,x,deep+1);
	}
}
int n,m,s;
void pre()
{
	for (int j=1;j<=20;j++)
	  for (int i=1;i<=n;i++)
	    f[i][j]=f[f[i][j-1]][j-1];
}

int LCA(int x,int y)
{
	if (d[x]<d[y]) swap(x,y);
	int k=log(n)/log(2)+1;
	for (int i=20;i>=0;i--)
	{
		if (d[f[x][i]]>=d[y])
			x=f[x][i];
	}
	if (x==y) return x;
	k=log(x)/log(2)+1;
	for (int i=20;i>=0;i--)
	{
		if (f[x][i]!=f[y][i])
		{
			x=f[x][i];
			y=f[y][i];
		}
	}
	return f[x][0];
}

int main()
{
	int x,y;
	scanf("%d%d%d",&n,&m,&s);
	for (int i=1;i<n;i++)
	{
		scanf("%d%d",&x,&y);
		put(x,y);
		put(y,x);
	}
	dfs(s,0,1);
	pre();
	for (int i=1;i<=m;i++)
	{
		scanf("%d%d",&x,&y);
		printf("%d\n",LCA(x,y));
	}
	return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值