【动态规划】【U】5. 最长回文子串

5. 最长回文子串

给你一个字符串 s,找到 s 中最长的回文子串。

如果字符串的反序与原始字符串相同,则该字符串称为回文字符串。

示例 1:

输入:s = “babad”
输出:“bab”
解释:“aba” 同样是符合题意的答案。

示例 2:

输入:s = “cbbd”
输出:“bb”

提示:

1 <= s.length <= 1000
s 仅由数字和英文字母组成

题目来源:https://leetcode.cn/problems/longest-palindromic-substring/

/*
    array[i][j]表示 s[i]--s[j]是否为回文串
    而 array的判断为
    1.如果s[i] == s[j],
    1.1 如果 i+1 > j-1 或 array[i+1][j-1] == true 则 array[i][j] = true
    1.2 其他情况一律 array[i][j] = false
    2. 如果 s[i] != s[j],array[i][j] = false

    例如: s = "babad"
       j  0  1  2  3  4     
    i     
    0     
    1
    2
    3
    4

j = 0
    第一步  array[0][0] = true
j = 1    
    第二步  array[0][1] = false   array[1][1] = true
j = 2    
    第三步  array[0][2] = true   array[1][2] = false  array[2][2] = true

由于array[i][j]只会参考array[i+1][j-1]的数据,array[i][j]覆盖array[i][j-1],因此我们可以用一维数组表示array[i]即可
*/
#define MAX(a, b) ((a) > (b) ? (a) : (b))

char * longestPalindrome(char * s){
    int len = strlen(s);
    bool array[len];
    int result = 0;
    int start = 0, end = 0;

    for (int j = 0; j < len; j++) {
        for (int i = 0; i <= j; i++) {
            if (s[i] == s[j]) {
                if (i + 1 > j - 1 || array[i+1] == true) {
                    array[i] = true;
                    if ((j - i + 1) > result) {
                        result = j - i + 1;
                        start = i;
                        end = j;
                    }
                } else {
                    array[i] = false;
                }
            } else {
                array[i] = false;
            }
        }
    }

    s[start + result] = '\0';

    return s + start ;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值