I am really tired

               Things about feelings are hard to deal with, after first attempt to love I don't believe any more.

          It likes affection from the oringnal animal essetial, once you droped in hard to get off, It make you are the happiest guy in this world also just wanna end your poor life. The only drag to treat this "ill" is time, time can brush eveythings include your hurted heart.

  Some guys say love is what makes them exist and love is the most chrish thing , I can understand why cause I had experience myself. It's a long story,  when I was in my  senior middle school on grade three a cute girl run into my world I fell in her "web" but lost myself , But the happiness didn't last long when the enthusiam got cool down the problem between us came out , finally we got parted but I am not regret , I gave out my true love there was no sorry and I will never forget her all my life.

 

一个基本的语言分析系统可以使用 Python 中的自然语言处理(NLP)库来构建。下面是一个简单的示例,演示如何使用 Python 和 NLTK 库来进行基本的文本分类: ```python import nltk from nltk.tokenize import word_tokenize from nltk.corpus import stopwords from nltk.stem import PorterStemmer from nltk.classify import NaiveBayesClassifier # 读取训练数据 train_data = [("I love this sandwich.", "pos"), ("This is an amazing place!", "pos"), ("I feel very good about these beers.", "pos"), ("This is my best work.", "pos"), ("What an awesome view", "pos"), ("I do not like this restaurant", "neg"), ("I am tired of this stuff.", "neg"), ("I can't deal with this", "neg"), ("He is my sworn enemy!", "neg"), ("My boss is horrible.", "neg")] # 预处理数据 stop_words = set(stopwords.words('english')) stemmer = PorterStemmer() def preprocess(text): tokens = word_tokenize(text.lower()) tokens = [stemmer.stem(t) for t in tokens if t.isalpha()] tokens = [t for t in tokens if t not in stop_words] return dict([(t, True) for t in tokens]) # 特征提取 train_features = [(preprocess(x), y) for (x, y) in train_data] # 训练分类器 classifier = NaiveBayesClassifier.train(train_features) # 预测新文本 text = "I'm really looking forward to seeing you tomorrow!" prediction = classifier.classify(preprocess(text)) print(prediction) ``` 在上面的示例中,我们首先定义了一些训练数据,然后使用 NLTK 库进行预处理和特征提取,最后使用朴素贝叶斯分类器对文本进行分类。这只是一个简单的示例,但你可以根据自己的需求进行扩展和改进。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值