TransC:Differentiating Concepts and Instances for Knowledge Graph Embedding

引言

传统方法:

  • 基于翻译的方法:如TransE、TransD、TransH、TransR等
  • 使用外部信息,如:
    • 实体类型
    • 文本描述
    • 逻辑规则

这些传统方法的缺点是:忽视了概念与实例之间的区别,这导致了以下问题:

  • 概念表示不足:大多数方法将概念和实例都编码为向量,这无法明确表示概念和实例之间的差异
  • 对于isA关系的敏感性不足:instanceOfsubClassOf(通常称为isA)是知识图谱中的两种特殊关系。

动机

层次概念:人们心中的概念是按层次组织的。因此,实例应该靠近它们所属的概念。
在TransC中,概念被编码为一个球体,实例作为向量在同一语义空间中,采用相对位置来模拟概念和实例之间的关系。

符号与概念

  • 关系集合 R = { r e , r c } ∪ R l \mathcal{R}=\{r_e,r_c\}\cup\mathcal{R}_l R={ re,rc}Rl,其中 R l R_{l} Rl是实例之间的关系, r e r_e reinstanceOf关系, r c r_c rcsubClassOf关系。

  • InstanceOf三元组集合 S e = { ( i , r e , c ) k } k = 1 n e , \mathcal{S_{e}} =\{(i,r_{e} ,c)_{k}\}^{n_{e}}_{k=1}, Se={(i,re,c)k}k=1ne,
    其中 i ∈ I , c ∈ C , n e i \in \mathcal{I}, c \in C, n_{e} iI,cC,ne S e S_{e} Se的大小

  • SubClassOf三元组集合 S c = { ( c i , r c , c j ) k } k = 1 n c , \mathcal{S_{c}}=\{(c_{i},r_{c},c_{j})_{k}\}^{n_{c}}_{k=1}, Sc={(ci,rc,cj)k}k=1nc,

  • 关系三元组 S l = { h , r , t } k = 1 n l \mathcal{S_{l}}=\{h,r,t\}_{k=1}^{n_{l}} Sl={ h,r,t}k=1nl
    其中 h , t ∈ I h,t \in \mathcal{I} h,tI, r ∈ R l r \in \mathcal{R_{l}} rRl

  • 概念:对于 c ∈ C c \in \mathcal{C} cC,我们学习一个球体 s ( p , m ) s(\mathbf{p},m) s(p,m),其中 p \mathbf{p} p是球心, m m m表示半径。

  • 传递性

    • InstanceOf-subClassOf的传递性关系可以表示为下列等式 ( i , r e , c
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值