自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(13)
  • 收藏
  • 关注

原创 pytorch中的torch.manual_seed()用于生成随机数种子理解

torch.manual_seed()在神经网络中,参数默认是进行随机初始化的。如果不设置的话每次训练时的初始化都是随机的,导致结果不确定。如果设置初始化,则每次初始化都是固定的。实际上,计算机并不能产生真正的随机数,而是已经编写好的一些无规则排列的数字存储在电脑里,把这些数字划分为若干相等的N份,并为每份加上一个编号,编号固定的时候,获得的随机数也是固定的。torch.manual_seed(1)用于设置随机初始化的种子,即上述的编号,编号固定,每次获取的随机数固定。if args.seed i

2020-11-03 11:00:59 1638 1

原创 Linux下的tar压缩解压缩命令详解

tar-c: 建立压缩档案-x:解压-t:查看内容-r:向压缩归档文件末尾追加文件-u:更新原压缩包中的文件这五个是独立的命令,压缩解压都要用到其中一个,可以和别的命令连用但只能用其中一个。下面的参数是根据需要在压缩或解压档案时可选的。-z:有gzip属性的-j:有bz2属性的-Z:有compress属性的-v:显示所有过程-O:将文件解开到标准输出下面的参数-f是必须的-f: 使用档案名字,切记,这个参数是最后一个参数,后面只能接档案名。tar -cf all.tar *.jp

2020-11-02 09:15:58 272

原创 Windows下cmd中cd不进某目录

问题出现:配置环境时发现cd不进去目标目录,但提示框又不报错原因是进入盘符不需要用cd命令方法一进入指定盘,盘符+":",不区分大小写例如欲进入F盘,直接输入F:即可(或f:)(只有盘符不区分,其下的一级到多级目录需要区分大小写)方法二cd 文件路径;后回车无效,可以加/d,解决例如进入d盘cd /d d:...

2020-11-02 08:55:58 3267 2

转载 论文解读|【Densenet】密集连接的卷积网络(附Pytorch代码讲解)

https://blog.csdn.net/sinat_33761963/article/details/83958802

2020-09-26 14:43:58 579

原创 图像预处理之减去RGB均值

减去RGB均值(以DIV2K数据集为例)原因:为了进行数据特征标准化,即像机器学习中的特征预处理那样对输入特征向量各维去均值再除以标准差,但由于自然图像各点像素值的范围都在0-255之间,方差大致一样,只要做去均值(减去整个图像数据集的均值或各通道关于图像数据集的均值)处理即可。class MeanShift(nn.Conv2d): def __init__(self, rgb_range, rgb_mean, rgb_std, sign=-1): super(MeanShift

2020-09-22 09:58:33 5639 6

转载 PyTorch的nn.Linear()详解

nn.Linear()PyTorch的 nn.Linear()是用于设置网络中的全连接层的需要注意的是全连接层的输入与输出都是二维张量,一般形状为[batch_size, size],不同于卷积层要求输入输出是四维张量。其用法与形参说明如下:in_features指的是输入的二维张量的大小,即输入的[batch_size, size]中的size。out_features指的是输出的二维张量的大小,即输出的二维张量的形状为[batch_size,output_size],当然,它也代表了该全连接

2020-09-16 16:33:05 13739

转载 PyTorch中的nn.Conv2d卷积详解

一、nn.Conv1d一维的卷积能处理多维数据nn.Conv1d(self, in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True))参数:  in_channel: 输入数据的通道数,例RGB图片通道数为3;  out_channel: 输出数据的通道数,这个根据模型调整;  kennel_size: 卷积核大小,可以是int,或tuple;kennel_size

2020-09-16 16:27:25 8231

转载 pytorch中nn.Sequential和nn.Module区别与选择

一、nn.Sequentialtorch.nn.Sequential是一个Sequential容器,模块将按照构造函数中传递的顺序添加到模块中。另外,也可以传入一个有序模块。 为了更容易理解,官方给出了一些案例:# Sequential使用实例model = nn.Sequential( nn.Conv2d(1,20,5), nn.ReLU(), nn.Conv2d(20,64,5), nn.ReLU()

2020-09-16 16:07:42 7368 7

原创 图像低频、高频信息的理解

图像频率图像频率是指图像中灰度变化剧烈程度的指标。图像低、高频信息图像的主要成分是低频信息,它形成了图像基本的灰度等级,对图像结构的决定作用较小;中频信息决定了图像的基本结构,形成了图像的主要边缘结构;高频信息形成了图像的边缘和细节,是在中频信息上对图像内容的强化。低频信息图像低频信息表示图像中灰度值变化缓慢的区域,对应着图像中大块平坦的区域,也就是大范围大尺度的信息,即常说的背景,是图像的大致概貌和轮廓,是图像的近似信息。高频信息图像高频信息表示图像中灰度值变化剧烈的区域,对应着图像的边缘、

2020-09-15 10:44:45 5160

原创 1*1卷积的理解与总结

1*1卷积的主要作用1、降维(减少参数)。比如,一张500×500且深度为100的图片在20个filter上做1×1的卷积,那么结果的大小为500×500×20;2、升维(用最少的参数拓宽网络channal);3、加入非线性。卷积层之后经过激励层,1×1的卷积在前一层的学习表示上添加了非线性激励( non-linear activation ),提升网络的表达能力;4、跨通道信息交互和特征整合(channal 的变换)。使用1×1卷积核,实现降维和升维的操作其实就是channel间信息的线性组合变化

2020-09-14 10:22:44 7513 1

原创 数据分析工具之Python(一)——Anaconda安装与环境变量配置

Anaconda安装与环境配置1.Anaconda简介1.1什么是AnacondaAnaconda是一个免费开源的Python和R语言的发行版本,用于计算科学(数据科学、机器学习、大数据处理和预测分析),Anaconda致力于简化包管理和部署。Anaconda的包使用软件包管理系统Conda进行管理。超过1200万人使用Anaconda发行版本,并且Anaconda拥有超过1400个适用于Windows、Linux和MacOS的数据科学软件包。Anaconda拥有超过1400个软件包其中包含Cond

2020-08-02 10:43:19 2882

原创 数据分析工具之Python(零)——Python简介及安装

为什么选择Python1.Python简介1.1编程语言介绍什么叫做编程语言?编程语言是用来定义计算机程序的形式语言。我们通过编程语言来编写程序代码,再通过语言处理程序执行向计算机发送指令,让计算机完成对应的工作。简而言之,编程语言就是人类指挥计算机进行工作的语言,也就是人类与计算机沟通的语言。编程语言分类:1.机器语言:直接用计算机能理解的二进制指令编写程序,直接控制硬件优点:执行效率高缺点:开发效率低,跨平台性差:因为离硬件近,贴近计算机硬件(CPU)针对某种CPU,所以跨平台性差。2

2020-08-01 11:32:09 350

原创 数据分析与数据挖掘的区别与个人理解

数据分析与数据挖掘的区别与个人理解1.理解大数据在了解数据分析与数据挖掘的区别之前,首先我们要明确大数据的概念,因为目前互联网所谓的数据分析与数据挖掘都是基于大数据来做的。1.1大数据的定义与特点大数据有非常多的定义,我们套用一个流传最广的概念,大数据指无法在可承受的时间范围内用常规软件工具进行捕捉、管理和处理的数据集合,是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力的海量、高增长率和多样化的信息资产。在维克托·迈尔-舍恩伯格及肯尼斯·库克耶编写的《大数据时代》 中大数据指不用随机分

2020-07-31 09:30:00 2263 1

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除