pytorch笔记
小小麦田mll
零基础从数据分析到数据挖掘的成长之路
展开
-
pytorch中的torch.manual_seed()用于生成随机数种子理解
torch.manual_seed()在神经网络中,参数默认是进行随机初始化的。如果不设置的话每次训练时的初始化都是随机的,导致结果不确定。如果设置初始化,则每次初始化都是固定的。实际上,计算机并不能产生真正的随机数,而是已经编写好的一些无规则排列的数字存储在电脑里,把这些数字划分为若干相等的N份,并为每份加上一个编号,编号固定的时候,获得的随机数也是固定的。torch.manual_seed(1)用于设置随机初始化的种子,即上述的编号,编号固定,每次获取的随机数固定。if args.seed i原创 2020-11-03 11:00:59 · 1576 阅读 · 1 评论 -
PyTorch的nn.Linear()详解
nn.Linear()PyTorch的 nn.Linear()是用于设置网络中的全连接层的需要注意的是全连接层的输入与输出都是二维张量,一般形状为[batch_size, size],不同于卷积层要求输入输出是四维张量。其用法与形参说明如下:in_features指的是输入的二维张量的大小,即输入的[batch_size, size]中的size。out_features指的是输出的二维张量的大小,即输出的二维张量的形状为[batch_size,output_size],当然,它也代表了该全连接转载 2020-09-16 16:33:05 · 13648 阅读 · 0 评论 -
PyTorch中的nn.Conv2d卷积详解
一、nn.Conv1d一维的卷积能处理多维数据nn.Conv1d(self, in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True))参数: in_channel: 输入数据的通道数,例RGB图片通道数为3; out_channel: 输出数据的通道数,这个根据模型调整; kennel_size: 卷积核大小,可以是int,或tuple;kennel_size转载 2020-09-16 16:27:25 · 8070 阅读 · 0 评论 -
pytorch中nn.Sequential和nn.Module区别与选择
一、nn.Sequentialtorch.nn.Sequential是一个Sequential容器,模块将按照构造函数中传递的顺序添加到模块中。另外,也可以传入一个有序模块。 为了更容易理解,官方给出了一些案例:# Sequential使用实例model = nn.Sequential( nn.Conv2d(1,20,5), nn.ReLU(), nn.Conv2d(20,64,5), nn.ReLU()转载 2020-09-16 16:07:42 · 7080 阅读 · 7 评论