向右探索算法思想

以下是牛客网上面字节跳动的一道编程题,我自己写了一种时间复杂度为O(n*n)的解决办法,但是超时了,后来看解答,看到一种时间复杂度为O(n)的算法,自己叫它向右探索算法。

时间限制:C/C++ 1秒,其他语言2秒

空间限制:C/C++ 128M,其他语言256M

我叫王大锤,是一名特工。我刚刚接到任务:在字节跳动大街进行埋伏,抓捕恐怖分子孔连顺。和我一起行动的还有另外两名特工,我提议

  1. 我们在字节跳动大街的N个建筑中选定3个埋伏地点。
  2. 为了相互照应,我们决定相距最远的两名特工间的距离不超过D。

我特喵是个天才! 经过精密的计算,我们从X种可行的埋伏方案中选择了一种。这个方案万无一失,颤抖吧,孔连顺!
……
万万没想到,计划还是失败了,孔连顺化妆成小龙女,混在cosplay的队伍中逃出了字节跳动大街。只怪他的伪装太成功了,就是杨过本人来了也发现不了的!

请听题:给定N(可选作为埋伏点的建筑物数)、D(相距最远的两名特工间的距离的最大值)以及可选建筑的坐标,计算在这次行动中,大锤的小队有多少种埋伏选择。
注意:

  1. 两个特工不能埋伏在同一地点
  2. 三个特工是等价的:即同样的位置组合(A, B, C) 只算一种埋伏方法,不能因“特工之间互换位置”而重复使用

输入描述:
第一行包含空格分隔的两个数字 N和D(1 ≤ N ≤ 1000000; 1 ≤ D ≤ 1000000)

第二行包含N个建筑物的的位置,每个位置用一个整数(取值区间为[0, 1000000])表示,从小到大排列(将字节跳动大街看做一条数轴)

输出描述:
一个数字,表示不同埋伏方案的数量。结果可能溢出,请对 99997867 取模

输入例子1:
4 3
1 2 3 4

输出例子1:
4

例子说明1:
可选方案 (1, 2, 3), (1, 2, 4), (1, 3, 4), (2, 3, 4)

输入例子2:
5 19
1 10 20 30 50

输出例子2:
1

例子说明2:
可选方案 (1, 10, 20)

自己代码:

import java.util.ArrayList;
import java.util.List;
import java.util.Scanner;

public class Main {

	public static void main(String[] args) {
		// TODO Auto-generated method stub
		Scanner sc = new Scanner(System.in);
		int n = sc.nextInt();
		int m = sc.nextInt();
		List<Integer> list = new ArrayList<Integer>();
		for(int i = 0;i<n;i++) {
			list.add(sc.nextInt());
		}
		
		Main e2 = new Main();
		int ans = e2.solution(n,m,list);
		System.out.println(ans);
	}
	public int solution(int n,int m,List<Integer> list) {
		int ans = 0;
		int temp = 2;
		if(n<2) return 0;
		for(int i = 0;i<n-2;i++) {
			for(int j = temp;j<n;j++) {
				if((list.get(j)-list.get(i))<=m) {
					ans = ans + (j-i-1);
				}
			}
			temp++;
		}
		return ans%99997867;
	}
}

代码思路:两次遍历,外侧遍历遍历取值的左边(头),内层遍历遍历取值的右边(尾)。

正确代码:

import java.util.Scanner;

public class Exercie02_Answer {
    private int mod = 99997867;
 
    private void sln() {
        Scanner sc = new Scanner(System.in);
        int N = sc.nextInt(), D = sc.nextInt();
        long cnt = 0;
        if (N <= 2) {
            System.out.println(-1);
            return;
        }
        int[] locs = new int[N];
        for (int i = 0; i < N; i++) {
            locs[i] = sc.nextInt();
        }
        sc.close();
        int left = 0, right = 2;
        while (right < N) {
            if (locs[right] - locs[left] > D) left++;
            else if (right - left < 2) right++;
            else {
                cnt += calC(right - left);
                right++;
            }
        }
        cnt %= mod;
        System.out.println(cnt);
    }
 
    private long calC(long num) {
        return num * (num - 1) / 2;
    }
 
 
    public static void main(String[] args) {
        new Exercie02_Answer().sln();
    }
}

代码思路:一次遍历,从下标为2开始向右遍历取值的尾,如果可行,固定取值的右端,从前面选两个数,由于右边是固定的,所以取到的三个值不会重复。
问:为什么不会重复?
答:固定右边取值,即每一次都让王大锤站在右边,其他两人从左部开头到尾巴前面任取两个值,通过排列与组合的思想容易知道,所有的取值可能必然不会重复;如果右边右移,右移之后的尾巴必然不会同任何与他尾巴不同的取值重复。’总而言之,只要右边固定,取值就不会重复。
向右探索算法关键:固定取遍历的变量(遍历的数即是整个可能取值的尾巴),从左边挑选其他值。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值