1.题目
有效括号字符串 定义:对于每个左括号,都能找到与之对应的右括号,反之亦然。详情参见题末「有效括号字符串」部分。
嵌套深度 depth 定义:即有效括号字符串嵌套的层数,depth(A) 表示有效括号字符串 A 的嵌套深度。详情参见题末「嵌套深度」部分。
给你一个「有效括号字符串」 seq,请你将其分成两个不相交的有效括号字符串,A 和 B,并使这两个字符串的深度最小。
不相交:每个 seq[i] 只能分给 A 和 B 二者中的一个,不能既属于 A 也属于 B 。
A 或 B 中的元素在原字符串中可以不连续。
A.length + B.length = seq.length
max(depth(A), depth(B)) 的可能取值最小。
划分方案用一个长度为 seq.length 的答案数组 answer 表示,编码规则如下:
answer[i] = 0,seq[i] 分给 A 。
answer[i] = 1,seq[i] 分给 B 。
如果存在多个满足要求的答案,只需返回其中任意 一个 即可。
示例 1:
输入:seq = “(()())“输出:[0,1,1,1,1,0]
示例 2:
输入:seq = “()(())()“输出:[0,0,0,1,1,0,1,1]
有效括号字符串:
仅由 “(” 和 “)” 构成的字符串,对于每个左括号,都能找到与之对应的右括号,反之亦然。
下述几种情况同样属于有效括号字符串:
1. 空字符串
2. 连接,可以记作 AB(A 与 B 连接),其中 A 和 B 都是有效括号字符串
3. 嵌套,可以记作 (A),其中 A 是有效括号字符串
嵌套深度:
类似地,我们可以定义任意有效括号字符串 s 的 嵌套深度 depth(S):
1. s 为空时,depth(””) = 0
2. s 为 A 与 B 连接时,depth(A + B) = max(depth(A), depth(B)),其中 A 和 B 都是有效括号字符串
3. s 为嵌套情况,depth(”(” + A + “)”) = 1 + depth(A),其中 A 是有效括号字符串
例如:"","()()",和 “()(()())” 都是有效括号字符串,嵌套深度分别为 0,1,2,而 “)(” 和 “(()” 都不是有效括号字符串。
来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/maximum-nesting-depth-of-two-valid-parentheses-strings
2.想法
此题主要是读懂题意,题意主要如下,按常规题目是算出括号的深度为多少,但此题加了一个限制条件即深度只能有0或者1表示,此时只需要将大于2的嵌套深度进行对2取余,就能满足题目的意思。
如((()))常规题目做出来应是[0,1,2,2,1,0],而此题需要对2取余即答案为[0,1,0,0,1,0]。答案可以为多种,但这种方便理解。
3.自己题解
class Solution {
public int[] maxDepthAfterSplit(String seq) {
char []a=seq.toCharArray();
int []result=new int[a.length];
Arrays.fill(result,0);
int flag=0;
for(int i=0;i<a.length;i++){
if(a[i]=='('&&flag==0){flag++;}
else if(a[i]=='('&&flag>0){result[i]=flag%2;flag++;}
else if(a[i]==')'){flag--;result[i]=flag%2;}
}
return result;
}
}
4.效率