随着风电在电力系统中渗透率提升,电网对其要求已从单纯发电量转向并网友好性与稳定支撑能力。在此背景下,在线监测成为保障风电场安全、高效、合规运行的关键。
电网新规要求风电机组具备低压穿越、无功调节等功能,推动风电场向“智能电源”转变。变流器与变压器作为核心设备,其状态直接决定并网性能与运行可靠性。因此,对它们进行在线监测,已从故障报警升级为满足并网规范、实现预测性维护与运行优化的重要手段。在线监测系统正成为风电场不可或缺的基础设施。

图片来源于网络
一、何以解忧,唯有监测:在线数据监测的极端重要性
面对高昂的故障代价与严格的电网要求,对变流器与变压器进行被动运维已无法满足需求。对其关键数据的实时、在线、深度监测,已成为保障资产安全与经济效益的生命线。
- 针对变流器:监测IGBT模块的结温波动与热循环、直流母线电容的等效串联电阻变化趋势,可以预测功率模块与电容的老化失效,在性能衰退前安排维护。
- 针对变压器:在线油色谱分析(DGA)是革命性手段。通过连续监测油中溶解的氢气、乙炔等特征气体,可在内部发生电弧放电或过热故障的早期(有时提前数月)发出预警,避免起火或爆炸等恶性事故。

图片来源于网络
二、如何监测:构建分层智能感知与诊断体系
现代风电场的在线监测解决方案,已形成“传感器-边缘-云端”协同的分层架构:
核心参数感知层(传感器网络):
- 变流器:在关键点位部署高频电流/电压传感器、光纤测温传感器(监测IGBT散热基板)、状态监测单元等,实时采集功率、温度、门极驱动信号、柜内环境温湿度等数据。
- 变压器:除了传统的油温、绕组温度、油位监测,核心是部署在线油色谱监测装置与高频局部放电传感器,实现对内部绝缘状态的直接透视。
- 发电机:同步监测绕组温度、轴承振动与温度,其状态直接影响变流器机侧的工作条件。
边缘智能处理层(就地诊断):
在风机控制器或本地网关中嵌入智能算法,对原始数据进行初步清洗、特征提取与实时诊断。例如,实时计算电流谐波畸变率、检测IGBT的微秒级过流事件、对变压器DGA数据进行三比值法初步故障分类,实现毫秒级到秒级的快速故障识别与保护。
云端专家诊断与预测平台(智慧大脑):
所有场站数据汇聚至云平台,利用大数据分析、机器学习与物理模型融合的数字孪生技术进行深度挖掘:
- 跨设备关联分析:例如,将变流器特定开关频率的谐波增大,与发电机轴承的特定振动频率关联,诊断是否为机电共振问题。
- 寿命预测与健康评分:基于累积的热循环次数、运行负荷数据,预测IGBT模块的剩余使用寿命;为每台变压器生成动态的健康指数。
- 维护决策支持:平台自动生成诊断报告、预警工单、备件需求预测,驱动运维从“计划检修”转向真正的“预测性维护”。
在风电迈向平价、成为主力电源的今天,对机械能到电能转换环节的深度在线监测,已不再是成本选项,而是保障投资安全、实现增值服务的战略性基础设施。 以变流器和变压器为核心的智能监测体系,不仅守护着设备自身的安全,更守护着电网的稳定与风电场的经济命脉。
1188

被折叠的 条评论
为什么被折叠?



