冒泡排序(Bubble Sort)
冒泡排序通过重复遍历数组,比较相邻元素并交换位置,将较大元素逐渐“冒泡”到数组末尾。
C++实现代码
void bubbleSort(int arr[], int n) {
for (int i = 0; i < n - 1; i++) {
for (int j = 0; j < n - i - 1; j++) {
if (arr[j] > arr[j + 1]) {
swap(arr[j], arr[j + 1]);
}
}
}
}
特点
- 时间复杂度:平均和最坏情况下为 $O(n^2)$,最好情况下(已排序)为 $O(n)$。
- 空间复杂度:$O(1)$(原地排序)。
- 稳定排序(相等元素相对位置不变)。
选择排序(Selection Sort)
选择排序每次遍历未排序部分,找到最小元素并交换到已排序部分的末尾。
C++实现代码
void selectionSort(int arr[], int n) {
for (int i = 0; i < n - 1; i++) {
int minIdx = i;
for (int j = i + 1; j < n; j++) {
if (arr[j] < arr[minIdx]) {
minIdx = j;
}
}
swap(arr[i], arr[minIdx]);
}
}
特点
- 时间复杂度:始终为 $O(n^2)$(无论输入是否有序)。
- 空间复杂度:$O(1)$。
- 不稳定排序(交换可能破坏相等元素的顺序)。
插入排序(Insertion Sort)
插入排序将数组分为已排序和未排序两部分,逐个将未排序元素插入到已排序部分的正确位置。
C++实现代码
void insertionSort(int arr[], int n) {
for (int i = 1; i < n; i++) {
int key = arr[i];
int j = i - 1;
while (j >= 0 && arr[j] > key) {
arr[j + 1] = arr[j];
j--;
}
arr[j + 1] = key;
}
}
特点
- 时间复杂度:平均和最坏情况下为 $O(n^2)$,最好情况下(已排序)为 $O(n)$。
- 空间复杂度:$O(1)$。
- 稳定排序(通过顺序插入保持相等元素顺序)。
适用场景对比
- 冒泡排序:教学用途,实际应用较少。
- 选择排序:适用于数据量小且交换成本高的场景。
- 插入排序:适用于部分有序或小规模数据。
627

被折叠的 条评论
为什么被折叠?



