青蛙兔子的约会

青蛙兔子的约会

题目描述

每当晚上时,青蛙都会出来活动,白天休息。白天时,兔子就会出来活动,晚上休息。
青蛙一次可以跳 a a a 米,兔子一次可以跳 b b b 米,已知青蛙在坐标 0 0 0 的位置,兔子在坐标 n n n 的位置。

现在青蛙与兔子在明天白天有个约会,但是青蛙不想等太久兔子,他决定在今天夜晚时就开始行动。
但是青蛙又怕累,所以晚上时青蛙只会向兔子的方向跳 [ L , R ] [L, R] [L,R] 次。
问青蛙能否与兔子约会?

输入描述:

输入共 T + 1 T+1 T+1 行。

第一行一个整数表示 T ( 1 ≤ T ≤ 1 0 5 ) T(1 \leq T \leq 10^5) T(1T105)

接下来 T T T 行,每行 5 5 5 个整数表示 a , b , n , L , R ( 1 ≤ a , b , n , L , R ≤ 1 0 9 , L ≤ R ) a,b,n,L,R(1 \leq a,b,n,L,R \leq 10^9, L≤R) a,b,n,L,R(1a,b,n,L,R109,LR)

数据保证青蛙不会跳过 n n n 的位置,即 1 ≤ L a ≤ R a ≤ n 1 \leq La \leq Ra \leq n 1LaRan

输出描述:

输出共 T T T 行,每行一个"YES" 或 “NO”(不包括双引号),表示青蛙和兔子能否约会。

示例1

输入
3
3 4 10 1 2
2 4 5 1 1
3 5 11 1 1
输出
YES
NO
NO

说明

第一问,青蛙晚上向右跳 1 1 1 次,白天无法与兔子相遇。青蛙向右跳 2 2 2 次,也就是 2 a = 6 2a=6 2a=6 的距离,白天兔子向左跳 1 1 1 次,可以相遇。所以在跳 [ 1 , 2 ] [1,2] [1,2] 次中,存在青蛙和兔子可以相遇。
第二问,青蛙晚上向右跳 1 1 1 次,然后无论白天兔子怎么跳,都无法和青蛙相遇。

题解

1 判断是否有整数解

该题目可以等价为:求解一个二元一次方程组的整数解。
即求解: a x + b y = n ax + by = n ax+by=n 的正整数解,且 x ∈ [ L , R ] x \in [L, R] x[L,R]
首先使用 裴蜀定理 来判断 a x + b y = n ax + by = n ax+by=n 是否有整数解。
判断过程为:

  1. ( a , b ) (a, b) (a,b) 的最大公约数 d d d
  2. 判断 d d d 是否能整除 n n n
  3. 若能整除则有整数解,若不能则没有整数解。

2 求通解 = 特解+其次解

a x + b y = n ax + by = n ax+by=n 有整数解,且 d = g c d ( a , b ) d = gcd(a, b) d=gcd(a,b)
那么我们求该方程组的通解,并判断通解集合和 [ L , R ] [L, R] [L,R]是否有交集。有交集则有能约会,没有则不能约会。

我们使用扩展欧几里得算法求出 a x + b y = d ax + by = d ax+by=d 的一组特解: ( x 0 , y 0 ) (x_0, y_0) (x0,y0)
由此得出 a x + b y = n ax + by = n ax+by=n 的一组特解: ( x 0 ∗ n d , y 0 ∗ n d ) (x_0*\frac{n}{d}, y_0*\frac{n}{d}) (x0dn,y0dn)

方程 a x + b y = 0 ax + by = 0 ax+by=0 的通解为: ( k ∗ b d , k ∗ a d ) , k ∈ Z (k*\frac{b}{d}, k*\frac{a}{d}), k \in \mathbb{Z} (kdb,kda),kZ

综上: a x + b y = n ax + by = n ax+by=n 的特解为: ( x 0 ∗ n d + k ∗ b d , y 0 ∗ n d + k ∗ a d ) , k ∈ Z (x_0*\frac{n}{d}+k*\frac{b}{d}, y_0*\frac{n}{d}+k*\frac{a}{d}), k \in \mathbb{Z} (x0dn+kdb,y0dn+kda),kZ

随后判断 { x ∣ x = x 0 ∗ n d + k ∗ b d , k ∈ Z } \{x|x = x_0*\frac{n}{d}+k*\frac{b}{d}, k \in \mathbb{Z}\} {xx=x0dn+kdb,kZ} [ L , R ] [L, R] [L,R] 是否有交集即可。详情看代码!

代码

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;


ll exgcd(ll a, ll b, ll &x, ll &y){
    if (b == 0ll){
        x = 1ll, y = 0ll;
        return a;
    }

    ll d = exgcd(b, a % b, y, x);
    y -= a / b * x;
    return d;
}


int main(){
    int t;cin>>t;
    while(t--){
        ll a, b, n, d, l, r, x0=0, y0=0;
        scanf("%lld%lld%lld%lld%lld", &a, &b, &n, &l, &r);
        d = exgcd(a, b, x0, y0);  // d = gcd(a, b), (x0, y0)是 ax+by = d 的特解
        if(n % d != 0){  // 没有整数解
            cout<<"NO\n";
        }
        else{ // 有整数解
            b = b/d;
            ll x1 = x0*n/d; // ax+by=n 的特解
            // 通解为  x = x1 + k*b
            ll x = (x1 + b) % b; // 最小特解
            x = x + l/b*b; // 接近 l 的解
            while(x<l) x += b; // 找到第一个大于l的特解x
            if(x <= r){  // 判断 第一个大于l的解x 是否小于等于 r
                cout<<"YES\n";
            }
            else{
                cout<<"NO\n";
            }
        }
    }

    return 0;
}
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值