问题描述:
小猪在小学中认识了很多的字,终于会写一点作文了。某天小猪买了一张方格稿纸来写作文,n 行 m 列。
某天小猪的邻居小小猪来小猪家玩,用黑墨水笔把小猪新买的方格稿纸涂黑了很多格子。每个格子不是完全黑色就是完全白色。
小猪不能责怪小小猪。作文写不成了,他觉得很无聊,就开始数里面有多少魔幻方阵。
如果稿纸中一个 k×k 的正方形区域满足以下两个条件,那么它就是魔幻方阵:
1.黑白格子的数量差不能超过1;
2.k不能小于2。
现在请你帮小猪求出他被染色的稿纸里面有多少个魔幻方阵。
输入格式:
第一行有二个正整数 n 和 m(互相之间以一个空格分隔),表示稿纸共有 n行 m 列。
接下来 n 行,每行有 m 个 0 或 1 的整数(互相之间以一个空格分隔),代表每个格子的颜色。如果这个数是 1 则为黑色,是 0 则为白色。
输出格式:
仅有一行,该行只有一个整数,表示稿纸中魔幻方阵的个数。
输入样例:
5 5
1 0 1 1 1
1 0 1 0 1
1 1 0 1 1
1 0 0 1 1
1 1 1 1 1
输出样例:
9
数据规模:
50%的数据,1≤n≤10,1≤m≤10;
75%的数据,1≤n≤180,1≤m≤180;
100%的数据,1≤n≤300,1≤m≤300。
解题思路:
数据不大,O(n^3)能过。
枚举方阵边长和左上角顶点即可。
求这个方阵中的黑色方格数,二维前缀和即可。
代码:
#include<cmath>
#include<cstdlib>
#include<iostream>
using namespace std;
int n,m,a[