Leetcode372 超级次方(JavaScript)

题目描述

计算 a^{b} 对 1337 取模,a 是一个正整数,b 是一个非常大的正整数且会以数组形式给出。

实现示例

解题思路

1、首先看到 a^{b} 我觉得这道题可以用快速幂方法来实现,上一篇文章力扣50  Pow(x,n)就是用的快速幂方法;

2、其次,需要了解取模。乘法在取模意义下满足分配律:

(A×B)modC = [( AmodC )×( BmodC )] modC

同号取模与取余结果相等,所以在本题条件下上式等价于

(A×B)%C = [( A%C )×( B%C )] %C

3、由于 b 是一个数组,所以需要对其进行分解。

     设数组b的长度是 i ,a的幂即 b 数组组成的整数为 x 。

      则有:  x = \sum_{i=0}^{n-1}10^{i}*b[n-1-i]    

      那么 a 的幂就是:  a^{x} = a^{\sum_{i=0}^{n-1}10^{i}*b^{[m-1-i]}} = \prod_{i=0}^{n-1}a^{10^{i}}*\prod_{i=0}^{n-1}a^{b[n-1-i]}    

4、用递归的方法进行求解。从 b_{n-1} 开始倒序计算。

实现代码

/**
 * @param {number} a
 * @param {number[]} b
 * @return {number}
 */
var superPow = function(a, b) {
    let c = 1337;
    return myPow(a,b,b.length-1);
    
    //递归
    function myPow(a,b,n){
        if(n===-1)return 1;
        return (quickPow(myPow(a,b,n-1),10)*quickPow(a,b[n]))%c;//所有的次方都是10以内的数字
    }
    
    //快速幂函数
    function quickPow(x, n){
        //计算x的n次幂模1377的值,n不大于10
        let ret = 1;
        x %= c;
        while(n!==0){
            if(n%2!==0){    //幂为奇数
                ret = ret * x % c;
            }
            x = x * x % c;
            n >>= 1;
        }
        return ret;
    };
};

时间复杂度:假设数组 b 所代表的数字是K,则时间复杂度是O(logK)

空间复杂度:O(1)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值