求两个字符串的最长公共子串,最长公共子序列,编辑距离

(1)    找出两个字符串的最长公共子串

题目:输入两个字符串,找出两个字符串中最长的公共子串。

找两个字符串的最长公共子串,这个子串要求在原字符串中是连续的。因此我们采用一个二维矩阵来存储中间结果,下面我们看这个二维数组如何构造?

假设两个字符串分别是:”bab”和”caba”。


如果str[i] == str[j] 则matrix[i][j] = 1,否则matrix[i][j] = 0

然后我们从矩阵中找出斜对角线最长的那个子字符串,就是最长公共子串。

即”ab”和”ba”分别为2。

我们可以简化一下,在当我们计算matrix[i][j]时,我们判断str[i] == str[j] 和matrix[i-1][j-1]。

如果str[i] == str[j],则matrix[i][j] = matrix[i-1][j-1] + 1;否则matrix[i][j] = 0。

如下图所示:


所以此时,我们只是将matrix[M][N]中,找到最大的值,即为最长公共子串。

然后我们还可以简化一下空间复杂度。

因为我们每判断一个matrix[i][j]时,实际上它只与matrix[i-1][j-1]相关。故所以我们可以使用一维数组来保存上一次的结果。

实现代码如下:

#include <cstring>
#include <iostream>
using namespace std;

int GetLongestCommonSubString(const char *pStr1, const char *pStr2)
{
	/* 判断参数合法性 */
	if (pStr1 == NULL || pStr2 == NULL)
	{
		return -1;
	}

	int n = strlen(pStr1);
	int m = strlen(pStr2);
	int longestCommonSubString = 0;

	/* 申请辅助空间,并初始化为0 */
	int *LCS = new int[m];
	for (int i = 0; i < m; i++)
	{
		LCS[i] = 0;
	}

	/* 不断判断pStr[i] ?= pStr[j],然后根据不同情况来更新LCS */
	for (int i = 0; i < n; i++)
	{
		for (int j = m - 1; j >= 0; j--)
		{
			if (pStr1[i] == pStr2[j])	/* 如果pStr1[i] == pStr2[j],LCS[j] = LCS[j-1] + 1 */
			{
				if (j == 0)
				{
					LCS[j] = 1;
				}
				else
				{
					LCS[j] = LCS[j-1] + 1;
				}
			}
			else						/* 如果pStr1[i] != pStr2[j],LCS[j] = 0 */
			{
				LCS[j] = 0;
			}

			/* 更新最长子串的长度 */
			if (LCS[j] > longestCommonSubString)
			{
				longestCommonSubString = LCS[j];
			}
		}
	}

	delete LCS;
	LCS = NULL;

	return longestCommonSubString;
}

void Test(const char *testName, const char *pStr1, const char *pStr2, int expectedLongestCommonSubString)
{
	cout << testName << " : ";
	if (GetLongestCommonSubString(pStr1, pStr2) == expectedLongestCommonSubString)
	{
		cout << "Passed." << endl;
	}
	else
	{
		cout << "Failed." << endl;
	}
}

int main()
{
	Test("Test1", "caba", "bab", 2);
	Test("Test2", "abcd", "efg", 0);
	Test("Test3", "abcde", "abcde", 5);
}

(2)    找出两个字符串的最长公共子序列

题目:输入两个字符串,求两个字符串的最长公共子序列。

首先,最长公共子序列与最长公共子串不同,子序列不要求其在原字符串是连续的。例如字符串X={A,B,C,B,D,A,B},Y = {B,D,C,A,B,A},则X与Y的最长公共子序列为Z={B,C,B,A}。

我们假设X={x1, x2, x3, …, xm},则X的前缀,Xi = {x1, x2, … ,xi}。即X={A,B,C,B,D,A,B},X4={A,B,C,B}。

Y = {y1, y2, y3, … ,yn},则Z={z1, z2, …,zk} 是X和Y的最长公共子序列。

如果xm == yn, 则zk = xm =yn 并且 Zk-1 是Xm-1 和 Yn-1的最长公共子序列。

如果 xm != yn, 则zk != xm,并且Z是Xm-1和Yn的最长公共子序列。

如果 xm != yn, 则zk != yn,并且Z是xm 和Yn-1的最长公共子序列。

所以我们定义了C[i][j]二维数组,用来存储Xi和Yj的最长公共子序列。

                            0                                  如果i==0或者j==0

即C[i][j] =           c[i-1][j-1] + 1               如果i,j > 0并且 xi == yj

                            Max(c[i][j-1],c[i-1][j])  如果i,j > 0 并且xi != yj

实现代码如下:

#include <cstdio>
#include <iostream>
using namespace std;

int max(int a, int b)
{
	return a > b ? a : b;
}

int GetLongestCommonSequence(const char *pStr1, const char *pStr2)
{
	/* 判断参数的合法性 */
	if (pStr1 == NULL || pStr2 == NULL)
	{
		return -1;
	}

	int m = strlen(pStr1);
	int n = strlen(pStr2);

	/* 申请二维空间LCS[m+1][n+1] */
	int **LCS = new int*[m+1];
	for (int i = 0; i < m + 1; i++)
	{
		LCS[i] = new int[n+1];
	}

	/* 分别对LCS[i][0], LCS[0][j]赋值为0 */
	for (int i = 0; i < m+1; i++)
	{
		LCS[i][0] = 0;
	}
	for (int j = 0; j < n+1; j++)
	{
		LCS[0][j] = 0;
	}

	/* 分别遍历两个字符串,并更新LCS[i][j] */
	for (int i = 1; i < m+1; i++)
	{
		for (int j = 1; j < n+1; j++)
		{
			if (pStr1[i-1] == pStr2[j-1])
			{
				LCS[i][j] = LCS[i-1][j-1] + 1;
			}
			else
			{
				LCS[i][j] = max(LCS[i-1][j], LCS[i][j-1]);
			}
		}
	}

	/* 获取最长公共子序列 */
	int longestCommonSequence = LCS[m][n];

	/* 删除动态空间 */
	for (int i = 0; i < m + 1; i++)
	{
		delete [] LCS[i];
		LCS[i] = NULL;
	}	
	delete []LCS;
	LCS = NULL;

	/* 返回最长公共子序列 */
	return longestCommonSequence;
}

void Test(const char *testName, const char *pStr1, const char *pStr2, int expectedLongestCommonSequence)
{
	cout << testName << " : ";
	if (GetLongestCommonSequence(pStr1, pStr2) == expectedLongestCommonSequence)
	{
		cout << "Passed." << endl;
	}
	else
	{
		cout << "Failed." << endl;
	}
}

int main()
{
	Test("Test1", "ABCBDAB", "BDCABA", 4);
	Test("Test2", "A", "A", 1);
	Test("Test3", "AB", "BC", 1);
}

(3)    求两个字符串的编辑距离

问题:输入两个字符串,求它们的最短编辑距离。

我们定义了一套操作方法来把两个不同的字符串变得相同,具体的操作方法是:

1.      修改一个字符(如把“a”替换为“b”)

2.      增加一个字符(如把“abdd”变成“aebdd”)

3.      删除一个字符(如把“travelling”变成“traveling”)

我们每执行上述一个步骤,则它们之间的编辑距离加1.

 我们同样定义一个二维数组,C[i][j]表示字符串Xi和字符串Yi的最短编辑距离。

C[i][j] = min{C[i-1][j] + 1, C [i][j-1] + 1,C [i-1][j-1]+ 1(xi != yj), C[i-1][j-1](xi = yj)}。

实现代码如下:

#include <cstring>
#include <iostream>
using namespace std;

int min(int a, int b, int c)
{
	int min = a;
	if (min > b)
	{
		min = b;
	}
	if (min > c)
	{
		min = c;
	}
	return min;
}

int GetLeastestEditDistance(const char *pStr1, const char *pStr2)
{
	if (pStr1 == NULL || pStr2 == NULL)
	{
		return -1;
	}

	int m = strlen(pStr1);
	int n = strlen(pStr2);

	/* 申请动态空间LED[m+1][n+1] */
	int **LED = new int *[m+1];
	for (int i = 0; i < m+1; i++)
	{
		LED[i] = new int[n+1];
	}

	/* 赋值LED[i][0] = i, LED[0][j] = j */
	for (int i = 0; i < m+1; i++)
	{
		LED[i][0] = i;
	}
	for (int j = 0; j < n+1; j++)
	{
		LED[0][j] = j;
	}

	/* 计算LED[i][j] */
	for (int i = 1; i < m+1; i++)
	{
		for (int j = 1; j < n+1; j++)
		{
			if (pStr1[i-1] == pStr2[j-1])
			{
				LED[i][j] = min(LED[i-1][j-1], LED[i-1][j] + 1, LED[i][j-1] + 1);
			}
			else
			{
				LED[i][j] = min(LED[i-1][j-1]+1, LED[i-1][j] + 1, LED[i][j-1] + 1);
			}
		}
	}

	/* 获得最小的编辑距离 */
	int leastestEditDistance = LED[m][n];

	/* 释放动态空间 */
	for (int i = 0; i < m+1; i++)
	{
		delete [] LED[i];
		LED[i] = NULL;
	}
	delete []LED;
	LED = NULL;

	/* 返回最小编辑距离 */
	return leastestEditDistance;
}

void Test(const char *testName, const char *pStr1, const char *pStr2, int expectedLeastestEditDistance)
{
	cout << testName << " : ";
	if (GetLeastestEditDistance(pStr1, pStr2) == expectedLeastestEditDistance)
	{
		cout << "Passed." << endl;
	}
	else
	{
		cout << "Failed." << endl;
	}
}

int main()
{
	Test("Test1", "a", "b", 1);
	Test("Test2", "abdd", "aebdd", 1);
	Test("Test3", "travelling", "traveling", 1);
	Test("Test4", "abcd", "abcd", 0);
	Test("Test5", NULL, NULL, -1);
}

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值