算法:模拟机器人走路874. Walking Robot Simulation

本文解析了如何通过编程解决Walking Robot Simulation问题,涉及路径规划、避障和坐标计算。机器人在二维平面上接受指令,避开障碍物,目标是找到最远离原点的位置。实例和代码展示了解决策略。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

874. Walking Robot Simulation

A robot on an infinite XY-plane starts at point (0, 0) facing north. The robot can receive a sequence of these three possible types of commands:

-2: Turn left 90 degrees.
-1: Turn right 90 degrees.
1 <= k <= 9: Move forward k units, one unit at a time.
Some of the grid squares are obstacles. The ith obstacle is at grid point obstacles[i] = (xi, yi). If the robot runs into an obstacle, then it will instead stay in its current location and move on to the next command.

Return the maximum Euclidean distance that the robot ever gets from the origin squared (i.e. if the distance is 5, return 25).

Note:

  • North means +Y direction.
  • East means +X direction.
  • South means -Y direction.
  • West means -X direction.

Example 1:

Input: commands = [4,-1,3], obstacles = []
Output: 25
Explanation: The robot starts at (0, 0):
1. Move north 4 units to (0, 4).
2. Turn right.
3. Move east 3 units to (3, 4).
The furthest point the robot ever gets from the origin is (3, 4), which squared is 32 + 42 = 25 units away.

Example 2:

Input: commands = [4,-1,4,-2,4], obstacles = [[2,4]]
Output: 65
Explanation: The robot starts at (0, 0):
1. Move north 4 units to (0, 4).
2. Turn right.
3. Move east 1 unit and get blocked by the obstacle at (2, 4), robot is at (1, 4).
4. Turn left.
5. Move north 4 units to (1, 8).
The furthest point the robot ever gets from the origin is (1, 8), which squared is 12 + 82 = 65 units away.

Example 3:

Input: commands = [6,-1,-1,6], obstacles = []
Output: 36
Explanation: The robot starts at (0, 0):
1. Move north 6 units to (0, 6).
2. Turn right.
3. Turn right.
4. Move south 6 units to (0, 0).
The furthest point the robot ever gets from the origin is (0, 6), which squared is 62 = 36 units away.

Constraints:

  • 1 <= commands.length <= 104
  • commands[i] is either -2, -1, or an integer in the range [1, 9].
  • 0 <= obstacles.length <= 104
  • -3 * 104 <= xi, yi <= 3 * 104
  • The answer is guaranteed to be less than 231.

转换为x,y坐标,obstacles转换为Set<String>

class Solution {
    public int robotSim(int[] commands, int[][] obstacles) {
        int[][] dirs = {{0, 1}, {1, 0}, {0, -1}, {-1, 0}};
        int x = 0, y = 0, square = 0, dir = 0;
        Set<String> obsSet = new HashSet<>();
        for (int[] obj: obstacles) 
            obsSet.add(obj[0] + "," + obj[1]);
        for (int c: commands) {
            if (c == -1) 
                dir = dir == 3 ? 0 : dir + 1;
            if (c == -2) 
                dir = dir == 0 ? 3 : dir - 1;
            else {
               int[] xy = dirs[dir];
               while (c-- > 0 && !obsSet.contains((x + xy[0]) + "," + (y + xy[1]))) {
                   x += xy[0];
                   y += xy[1];
                   square = Math.max(square, x * x + y * y);
               }
            }
        }
        
        return square;
    }
}

参考

https://leetcode.com/problems/walking-robot-simulation/discuss/152322/Maximum!-This-is-crazy!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值