- 不同路径
这题就是一个组合问题。
int fun(int num)
{
int ans = 1;
while(num)
{
ans*=num;
num--;
}
return ans;
}
int uniquePaths(int m, int n) {
int all = m+n-2;
int ans = fun(all)/fun(m-1)/fun(all-m+1);
return ans;
}
63不同路径 II
一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为“Start” )。
机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为“Finish”)。
现在考虑网格中有障碍物。那么从左上角到右下角将会有多少条不同的路径?
思路:
这题是典型的动态规划问题,用dp[i+1][j+1] 表示到达第i行第j列有几种走法(这里行和列都多1,为了处理方便)。
状态转移方程也很好写:到达每格位置只有两种方法:从上到下或从左到右。
dp[i+1][j+1] = dp[i][j+1] + dp[i+1][j];
起始需要dp[0][1] = 1;是因为到起始位置有一种走法。
这里使用了一个数组来保存所有结果,其实仔细观察,可以看到每个位置只需上一行的和这一行新的信息。因此可以只需一个一维数组就行。
相似题目:走楼梯(一维的)
int m = obstacleGrid.size();
int n = obstacleGrid[0].size();
vector<vector<int>> dp(m+1, vector<int>(n+1, 0));
dp[0][1] = 1;
for(int i = 0; i < m; ++i)
{
for(int j = 0; j < n; ++j)
{
if(obstacleGrid[i][j] == 0)
{
dp[i+1][j+1] = dp[i][j+1] + dp[i+1][j];
}
}
}
return dp[m][n];
}
本文深入探讨了不同路径问题的算法解决方法,包括组合问题的直接计算和动态规划的实现。通过具体的代码示例,详细解释了如何计算从网格左上角到右下角的不同路径数量,尤其是在存在障碍物的情况下。
658

被折叠的 条评论
为什么被折叠?



