动态规划

0-1背包问题

简要说下动态规划:通常用来求解最优化问题,通过组合子问题的解来求得原问题的解。动态规划求解要有两个要素:最优子结构和子问题重叠。(暂时不太理解)

使用背包问题
这里就是0-1背包问题。有一堆物品m,重量w,价值v,背包容量c。
递推式:

1) j<w(i)      V(i,j)=V(i-1,j)       //i指i个物品,j是容量
2) j>=w(i)     V(i,j)=max{ V(i-1,j),V(i-1,j-w(i))+v(i) }

由子问题的最优解来求出最优解。

最优解的组成:

//v(i,j) = v(i-1,j); //第i个物品没有装
//v(i,j) = v(i-1, j-w(i))+v(i);    //装了第i个物品
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值