同济大学高等数学第7版笔记和课后答案

完整版:http://zaoguang.100xuexi.com/SubItem/IndexInfoDetail.aspx?id=5a3d5cdf-1c8c-4905-a453-4ec1fc2bb59d
第1章 函数与极限
1.1 复习笔记
一、映射与函数
1函数
(1)函数的性质(见表1-1)
表1-1 函数的性质
在这里插入图片描述

(2)反函数与复合函数
①反函数的特点
a.函数f和反函数f-1的单调性一致。
b.f的图像和f-1的图像关于直线y=x对称。
②复合函数
g与f能构成复合函数f°g的条件是:f的定义域与g的值域的交集不能为空集。
(3)函数的运算
设函数f(x),g(x)的定义域为Df,Dg,且定义域有交集为D,则可定义这两个函数的下列运算
和(差)f±g:(f±g)(x)=f(x)±g(x),x∈D。
积f·g:(f·g)(x)=f(x)·g(x),x∈D。
商f/g:(f/g)(x)=f(x)/g(x),x∈D{x|g(x)=0,x∈D}。
(4)初等函数
5类基本初等函数:幂函数、指数函数、对数函数、三角函数、反三角函数。
二、数列的极限
1数列极限的定义
数列{xn}收敛于a⇔⇔∀ε>0,∃正整数N,当n>N时,有|xn-a|<ε。
数列{xn}是发散⇔不存在。
2收敛数列的性质
(1)唯一性
如果数列{xn}收敛,则它的极限唯一。
(2)有界性
如果数列{xn}收敛,则数列{xn}一定有界。
①有界数列:存在正数M,使得对于一切xn都满足不等式|xn|≤M。
②无界数列:不存在正数M,使得对于一切xn都满足不等式|xn|≤M。
(3)保号性
如果,且a>0(或a<0),则存在正整数N>0,当n>N时,都有xn>0(或xn<0)。
推论:如果数列{xn}从某项起有xn≥0(或xn≤0)且,则a≥0(或a≤0)。
(4)收敛数列与其子数列间的关系
①如果数列{xn}收敛于a,则它的任一子数列也收敛,且极限也是a。
②如果数列{xn}有两个子数列收敛于不同的极限,则数列{xn}是发散的。
③一个发散的数列也可能有收敛的子数列。
三、函数的极限
1函数极限的定义
(1)函数f(x)极限的两种情形
①自变量x趋于有限值x0时函数的极限
只有及都存在并且相等时,x→x0时极限存在。
②自变量x趋于无穷大时函数的极限

⇔∀ε>0,∃δ>0,当|x|>X时,有|f(x)-A|<ε。
2函数极限的性质
(1)唯一性
如果存在,则这极限唯一。
(2)局部有界性
如果,则存在常数M>0和δ>0,使得当0<|x-x0|<δ时,有|f(x)|≤M。
(3)局部保号性
①如果,且A>0(或A<0),则存在常数δ>0,使得当0<|x-x0|<δ时,有f(x)>0(或f(x)<0)。
②如果,则存在着x0的某一去心邻域U°(x0),当x∈U°(x0)时,有|f(x)|>|A|/2。
③如果在x0的某去心邻域内f(x)≥0(或f(x)≤0),而且,则A≥0(或A≤0)。
(4)函数极限与数列极限的关系
如果极限存在,{xn}为函数f(x)的定义域内任一收敛于x0的数列,且满足:xn≠x0(n∈N+),则相应的函数值数列{f(xn)}必收敛,且。
四、无穷小与无穷大
1无穷小
若,称f(x)是x→x0时的无穷小量。
2无穷大
(1)定义
若,称f(x)是x→x0时的无穷大量。
(2)渐近线
设曲线y=f(x)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值