高数上册第七章小结笔记

第七章 微分方程

第一节 微分方程的基本概念

1,定义:一般的,凡表示未知函数,位置函数的导数与自变量之间的关系的方程,叫做微分方程,有时也简称方程。微分方程中所出现的未知函数的最高阶导数的阶数,叫做微分方程的阶。

2,如果微分方程的解中含有任意常数,且任意常数的个数与微分方程的阶数相同,这样的解叫做微分方程的通解。 确定了通解中的任意常数之后,即得到微分方程的特解(其图形称为曲线积分)

3,小结,求几阶就是求几次导。

第二节 可分离变量的微分方程

1, g(y)dy=f(x)dx 左右两边同时求积分即可 。

例如:dy/dx=2xy 1/ydy=2xdx 两边同时积分得 ln|y|=x^2+c |y|=e^(x^2+c) y=+/- e^(x^2+c) +/-c*e^(x^2) 注:在求解过程中每一步不一定是同解变形,因此可能是增减解。

2,定义:一般的,如果一个一阶线性微分方程能写成g(y)dy=f(x)dx 的形式,就是说,能把微分方程的一端只含y的函数和dy,另一端只含x的函数和dx,那么原方程就称为可分离变量的微分方程。

第三节 齐次方程

1,定义:如果一阶微分方程可化为dy/dx=a(y/x)的形式,那么就称这方程为齐次方程。

2,判断:先处理成y/x的整体,判断能否成为齐次方程的条件是让式子中的x y的次方数对称;

3:求解齐次方程三步走: (1)u=y/x ,(2)y=xu ,(3)dy/dx=u+xdu/dx; 同理,当遇到某些特殊的微分方程,我们也可以换成;(1)u=x/y ,(2)x=yu ,(3)dx/dy=u+ydu/dy.

第四节 一阶线性微分方程

1:方程 dy/dx+p(x)y=q(x) 叫做一阶线性微分方程,因为它对于未知函数y及其导数是一次方程。如果q(x)=0,那么称方程为齐次的,如果q(x)不等于0,那么称方程为非齐次方程。

2:设dy/dx=p(x)=q(x)为非齐次方程。求其解,先把q(x)换成0,变成dy/dx+p(x)=0,此方程叫做对应非齐次线性方程的齐次方程。分离变量得到dy/y=-p(x)dx,两端积分得到y=ce^(-lp(x)dx)  c=+/-e^c1.这叫做对应的齐次方程的通解。                   

3:非齐次线性方程的通解是对应齐次方程的通解加非齐次线性方程的特解。

4:伯努利方程dy/dx+p(x)y=q(x)y^n  (n不等于0,1) 

求伯努力方程的通解过程如下:(1)先把两端同时除以y^n;(2)引入一个新的因变量z=y^(1-n),将方程转化为dz/dx=(1-n)y^(-n)dy/dx      (3)用(1-n)乘(1)中除后的方程的两端,再通过上边的代换可以得到线性方程如下                           dz/dx+(1-n)p(x)z=(1-n)q(x).求出此方程的通解后,用y^(1-n)代换z便得到伯努利方程的通解。

第五节可降阶的高阶微分方程

1:高阶微分方程:二阶即二阶以上的微分方程,叫做高阶微分方程。

2:三种典型的容易降解的高阶微分方程的解法:

(1)y^n=f(x)型的微分方程:只有一个自变量x在式子右端的f(x)函数中,所以在求解的时候可以看左边是y的几阶,对f(x)就进行几次连续积分。注意:逐次积分,每积一次要多一个任意常数。

(2)y''=f(x,y').型的微分方程解法:右端不显含未知数y,我们设p=y',原式可以化为p'=f(x,p),这是一个关于变量x,p的一阶线性微分方程,其通解为p=a(x,c1),根据p=dy/dx,我们又可以得到一个线性方程:dy/dx=a(x,c1),我们对它进行两边积分得到方程通解。

(3)y''=f(y.y')型的微分方程解法:不显含自变量x,我们令y'=p.则y''=dp/dx=dp/dy*dy/dx=pdp/dy这样的话,原方程可以化为pdp/dy=f(y,p).这是一个关于变量p,y的一阶线性方程。对其进行分离变量两边积分得到通解。

第六节高阶线性微分方程

1:n阶线性微分方程的一般形式y^n+a1(x)*y^(n-1)+a2(x)*y^(n-2)+......+a(n-1(x)*y'+an(x)*y=f(x)

2:线性微分方程的解的结构:先讨论二阶齐次线性方程y''+p(x)y'+Q(x)y=0.

定理一:如果函数y1(x)和y2(x)是方程的两个解,那么y=c1y1(x)+c2y2(x)也是方程的解,其中c1  c2是任意常数。          设y1(x),y2(x).......yn(x)为定义在区间I上的n个函数,如果存在n个不全为0的常数k1 ,k2 ,......kn使得当x属于I时有恒等式k1y1+k2y2+.......+knyn=0成立,那么称这n个函数在I上线性相关,否则就称为线性无关。

定理二:如果y1(x),y2(x)是方程的两个线性无关的特解,那么y=c1y1(x)+c2y2(x)就是方程的通解。其中c1 c2 是任意常数。  其推论;如果y1(x),y2(x),........yn(x)是n阶齐次线性方程y^n+a1(x)*y^(n-1)+.........+an-1(x)y'+an(x)y=0的n个线性无关的解,那么此方程的通解(c1,c2......cn是任意常数)y=c1y1(x)+c2y2(x)+...........cnyn(x).

3;判断两个函数在区间上是线性相关还是线性无关的充分必要条件:

y1(x) y2(x) 线性相关——存在不全为0的k1 k2使得k1y1(x)+k2y2(x)=0;

y1(x) y2(x)线性相关——y1(x)/y2(x)=-k2/k1(无妨设k1不等于0);

y1(x) y2(x)线性无关——y1(x)/y2(x)不等于常数。

定理三:设y*(x)是二阶非齐次方程y''+p(x)y'+Q(x)y=f(x)的一个特解,Y(x)是与之对应的齐次方程的通解,那么这个二阶线性非齐次线性微分方程的通解是y=Y(X)+y*(x)

定理四:设非齐次线性微分方程的右端f(x)是两个函数的和,即y''+p(x)y'+Q(x)y=f1(x)+f2(x),而y1*(x)与y2*(x)分别是方程y''+p(x)y'+Q(x)y=f1(x)和y''+p(x)y'+Q(x)y=f2(x)的特解,则原方程的特解就是y1*(x)+y2*(x).这一定理称为线性微分方程的解的叠加原理。

第七节常系数齐次线性微分方程

1:求二阶常系数齐次线性微分方程的通解的步骤如下:(1)写出微分方程的特称方程r^2=pr+q=0.    (2)写出特征方程的两个根 r1,r2;   (3)根据下表对应情形写出通解:

特征方程的两个根微分方程对应的通解
两个不相等的实根r1,r2y=c1e^r1x+c2e^r2x
两个相等的实根r1,r2y=(c1+c2x)e^r1x
一对共轭复根r1,2=a+-biy=e^ax(c1cosbx+c2sinbx)

2:求二阶常系数非齐次·线性微分方程的通解步骤如下:(1)先根据上边的方法步骤求出其对应的二阶常系数齐次线性微分方程的通解;(2)求出这个二阶常系数非齐次线性微分方程的特解:首先明白这个特解的通式为:y*=x^ke^ixQ(x)..当i不等于r1,也不等于r2时,k=0;当i等于r1或r2其中的一个时,k=1;当i=r1=r2时,k=2;     求Q(x)时要看p(x),看其中未知量x的最高次方是多少,得出对应的Q(x)=ax^n+bx^(n-1)+cx^(n-2)...........+h(h为常数)

3:n阶常系数齐次线性微分方程的一般形式y^n+p1y^(n-1)........pny=0;这个微分方程对应的特征方程是r^n+p1r^(n-1)+p2r^(n-2)......p(n-1)r+pn=0;根据特征方程的跟写出其对应的微分方程的解:

特征方程的根微分方程通解中的对应项
单实根给出一项:ce^rx
一对单复根r1,2=a+/-bi给出两项:e^ax(c1cosbx+c2sinbx)
k重实根r给出k项:e^rx(c1+c2x+....ckx^(k-1))
一对k重复根r1,2=a+/-bi给出2k项:e^ax[(c1+c2x+....ckx^(k-1)cosbx+D1+D2x+.....Dkx^(k-1)sinbx]

n阶常系数齐次线性微分方程的通解:y=c1y1+c2y2+.........cnyn.

  • 7
    点赞
  • 12
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值