NLP实践-Task2

本文介绍了自然语言处理中的基本文本处理技能,包括正向、逆向和双向最大匹配法的分词概念,以及词、字符频率统计。接着讲解了语言模型中的n-gram模型(unigram、bigram、trigram)和词袋模型的应用。最后讨论了基于词袋模型的文本矩阵化方法。
摘要由CSDN通过智能技术生成

任务链接:https://wx.zsxq.com/dweb/#/index/222248424811

1.基本文本处理技能

1.1分词的概念(分词的正向最大、逆向最大、双向最大匹配法)
正向最大匹配法:对句子从左到右进行扫描,尽可能地选择与词典中最长单词匹配的词作为目标分词,然后进行下一次匹配。
逆向最大匹配法:对句子从右到左进行扫描,尽可能地选择与词典中最长单词匹配的词作为目标分词,然后进行下一次匹配。
双向最大匹配法:将正向最大匹配算法和逆向最大匹配算法进行比较,从而确定正确的分词方法。
分词方法参考链接:https://blog.csdn.net/selinda001/article/details/79345072
1.2 词、字符频率统计(使用Python中的collections.Counter模块)

import jieba
from collections import Counter

data = '北京大学和清华大学是中国的顶尖大学'

print('单词统计')
words = list(jieba.cut(data))
print(Counter(words))

print('字符统计')
print(Counter(list(data)))

2. 语言模型

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值