数据结构之队列

概念

队列是一种首受限的线性表,它是一种先进先出,后进后出的数据结构。

特点

  • 只允许在一端进行插入(入队)操作,在另一段进行删除(出队)操作
  • 插入的一端叫队尾,删除的一段叫队首

队列的实现方式

  1. 使用顺序表实现队列
  2. 使用链表实现队列

使用顺序表实现队列

需求

	 1. 队列的判空操作:isEmpty() 对应Array的isEmpty()
     2. 求队列的长度:getSize() 对应Array的getSize()
     3. 取队首元素操作:peek()  对应Array的getFirst()
     4. 入队操作:push(x)    对应Array的addLast()
     5. 出队操作:pop()  对应Array的removeFirst()

代码

  1. 定义一个名为IQueque的接口
public interface IQueue<E> {
    /*
     1. 队列的判空操作:isEmpty() 对应Array的isEmpty()
     2. 求队列的长度:getSize() 对应Array的getSize()
     3. 取队首元素操作:peek()  对应Array的getFirst()
     4. 入队操作:push(x)    对应Array的addLast()
     5. 出队操作:pop()  对应Array的removeFirst()
    */
    Boolean isEmpty();
    int getSize();
    E peek();
    void push(E e);
    E pop();
}
  1. 使用原生数组实现队列
public class ArrayListQueue<E> implements IQueue<E> {
    private E[] data;
    private int size;

    public ArrayListQueue(int Capacity) {
        this.data = (E[])new Object[Capacity];
    }
    public ArrayListQueue() {
        this.data = (E[])new Object[10];
    }
    @Override
    public Boolean isEmpty() {
        return size==0;
    }

    @Override
    public int getSize() {
        return size;
    }

    @Override
    public E peek() {
        return data[0];
    }

    @Override
    public void push(E e) {
        //入队需要判断原生数组容量
        if (data.length==size){
            //数组满,需要扩容
            resize(data.length*2);
        }
        data[size]=e;
        size++;
    }
    @Override
    public E pop() {
        //取出队首元素
        E ele = data[0];
        //将数组向前移动一位
        for (int i = size-1; i>=1; i--) {
            data[i-1] = data[i];
        }
        //将数组最后一个元素赋值为null
        data[size-1] = null;
        size--;
        //判断是否需要缩容
        if (data.length>=20&&size==data.length/4){
            resize(data.length/2);
        }
        return ele;
    }


    private void resize(int newCapacity) {
        //1.定义一个新的数组
        E[] newData = (E[])new Object[newCapacity];
        //2.将data中的数据迁移到newData中
        for (int i = 0; i < data.length; i++) {
            newData[i] = data[i];
        }
        data=newData;
    }


}

使用链表实现队列

补充:

使用原生数组实现循环队列

import java.util.Arrays;

public class LoopQueue<E> implements IQueue<E> {
    private E[] data;
    private int front,tail; //指针:fron表示队首index,tail表示队尾index(一般指的是带添加元素位置的索引)
    private int size;


    public LoopQueue() {
        data = (E[]) new Object[10];
    }
    public LoopQueue(int capatity) {
            data = (E[]) new Object[capatity];
    }

    @Override
    public String toString() {
        return Arrays.toString(data);
    }

    @Override
    public Boolean isEmpty() {
        return front==tail;
    }

    @Override
    public int getSize() {
        return size;
    }

    @Override
    public E peek() {
        return data[front];
    }

    @Override
    public void push(E e) {
        //1.判断队列是否满了
        if ((tail+1)%data.length==front){
            //满,则需要扩容
            resize(data.length*2);
        }

        //2.入队
        data[size]=e;

        //3.tail指向下待添加元素的位置)
        tail = (tail+1)%data.length;//该算法可以实现指针的转弯

        //4.数组长度+1
        size++;
    }

    @Override
    public E pop() {
        //0.判断队列中是否还有元素
        if (isEmpty()==true){
            throw  new RuntimeException("队列为空");
        }
        //1.取出队首元素,再将data[front]=null
        E lastEle = data[front];
        data[front]=null;
        //2.front指向下一个队首元素
        front = (front+1)%data.length;//该算法可以实现指针的转弯

        //3.缩容,需要解决复杂度震荡问题
        if (data.length>=20&&size == data.length/4){
            resize(data.length/2);
        }
        //4.size--
        size--;
        return lastEle;
    }

    public void resize(int newCapacity){
        //1.创建新数组,用于存放data中的数据
        E[] newData = (E[])new Object[newCapacity];
        
        //2.将data中的数据迁移到newdata中
        for (int i = 0; i < size; i++) {
            newData[i] = data[(i+front)%data.length];
        }
        //3.将data替换
        data = newData;
    }
}

使用原生链表实现循环队列

public class LoopQueue<E> implements IQueue<E> {
    //虚拟头节点
    private Node dummyNode;
    //链表长度
    private int size;

    private class Node{
        //节点值
        private E e;

        //该节点指向的下一个节点
        private Node next;

        public Node() {
        }

        public Node(E e) {
            this.e = e;
        }

        public Node(E e, Node next) {
            this.e = e;
            this.next = next;
        }
    }
    public LoopQueue() {
        dummyNode = new Node(null,dummyNode);
        size = 0;
    }

    @Override
    public Boolean isEmpty() {
        return size==0;
    }

    @Override
    public int getSize() {
        return size;
    }

    @Override
    public E peek() {
        return dummyNode.next.e;
    }

    @Override
    public void push(E e) {
        Node newNode = new Node(e, dummyNode);
        if (size==0){
            dummyNode.next=newNode;
        }else{
            //找到队尾元素
            Node tailNode=dummyNode;
            for (int i = 0; i <size ; i++) {
                tailNode=tailNode.next;
            }
            tailNode.next=newNode;
        }
        size++;
    }

    @Override
    public E pop() {
        if (size==0){
            return null;
        }else{
            //找到队首元素
            Node firstNode = dummyNode.next;
            dummyNode.next=firstNode.next;
            size--;
            return firstNode.e;
        }
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

大数据老人家i

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值