基本求导公式

 一、常数函数求导

1. 公式:f(x) = c(c为常数),f'(x) = 0

解释:常数函数的导数为零。

二、幂函数求导

2. 公式:f(x) = x^n,f'(x) = nx^(n-1)

解释:幂函数的导数可以通过将指数减一并乘以原指数得到。

三、指数函数求导

3. 公式:f(x) = e^x,f'(x) = e^x

解释:指数函数e^x的导数仍然是e^x本身。

4. 公式:f(x) = a^x(a为常数且a>0, a≠1),f'(x) = a^x * lna

解释:以a为底的指数函数的导数是其本身乘以lna。

四、对数函数求导

5. 公式:f(x) = ln(x),f'(x) = 1/x

解释:自然对数函数的导数是1除以自变量x。

6. 公式:f(x) = loga(x)(a为常数且a>0, a≠1),f'(x) = 1/(x * lna)

解释:以a为底的对数函数的导数是1除以自变量x乘以lna。

五、三角函数求导

7. 公式:f(x) = sin(x),f'(x) = cos(x)

解释:正弦函数的导数是余弦函数。

8. 公式:f(x) = cos(x),f'(x) = -sin(x)

解释:余弦函数的导数是负的正弦函数。

9. 公式:f(x) = tan(x),f'(x) = sec^2(x)

解释:正切函数的导数是sec^2(x),其中sec(x) = 1/cos(x)。

10. 公式:f(x) = cot(x),f'(x) = -csc^2(x)

解释:余切函数的导数是负的csc^2(x),其中csc(x) = 1/sin(x)。

六、反三角函数求导

11. 公式:f(x) = arcsin(x),f'(x) = 1/√(1-x^2)

解释:反正弦函数的导数是1除以根号下1减去x的平方。

12. 公式:f(x) = arccos(x),f'(x) = -1/√(1-x^2)

解释:反余弦函数的导数是负的1除以根号下1减去x的平方。

13. 公式:f(x) = arctan(x),f'(x) = 1/(1+x^2)

解释:反正切函数的导数是1除以1加上x的平方。

14. 公式:f(x) = arccot(x),f'(x) = -1/(1+x^2)

解释:反余切函数的导数是负的1除以1加上x的平方。

七、复合函数求导

15. 公式:f(g(x)),f'(x) = f'(g(x)) * g'(x)

解释:复合函数的导数可以通过链式法则求得。

八、和、差、积、商的求导

16. 公式:(f(x) + g(x))' = f'(x) + g'(x)

解释:和函数的导数等于各函数导数的和。

17. 公式:(f(x) -g(x))' = f'(x)- g'(x)

解释:差函数的导数等于各函数导数的差。

18. 公式:(f(x) * g(x))' = f'(x) * g(x) + f(x) * g'(x)

解释:积函数的导数等于第一个函数乘以第二个函数的导数加上第二个函数乘以第一个函数的导数。

19. 公式:(f(x) / g(x))' = [f'(x) * g(x) -f(x) * g'(x)] / g(x)^2

解释:商函数的导数等于分子导数与分母乘积减去分子与分母导数乘积,再除以分母的平方。

九、反函数求导

20. 公式:如果y = f(x)在x = a处可导,且f'(a) ≠ 0,则它的反函数x = g(y)在y = f(a)处可导,且g'(f(a)) = 1/f'(a)

解释:反函数的导数等于原函数在该点导数的倒数。

十、参数方程求导

21. 公式:设x = f(t),y = g(t)是由参数t表示的函数,则(dy/dx)' = g'(t) / f'(t)

解释:参数方程中y对x的导数可以通过对t求导后相除得到。

十一、隐函数求导

22. 公式:如果F(x, y) = 0确定了y作为x的隐函数,则(dy/dx) = -F'(x, y) / F'(y, x)

解释:隐函数的导数可以通过对等式两边同时对x求导并解出dy/dx得到。

十二、向量函数求导

23. 公式:设r(t) = (x(t), y(t), z(t))是一个向量函数,则其导数为r'(t) = (x'(t), y'(t), z'(t))

解释:向量函数的导数等于其各分量函数分别对t求导后的向量。

十三、多元函数偏导数

24. 公式:设z = f(x, y),则它的偏导数为fx = ∂f/∂x,fy = ∂f/∂y

解释:多元函数的偏导数是指该函数关于某一自变量求导时,其他自变量视为常数。

<think>好的,我现在需要处理用户的查询,关于常见求导公式的数学内容。首先,用户明确要求查找微积分中的求导公式,所以我得确保覆盖基本和常用的导数规则。用户可能正在学习微积分,需要这些公式来完成作业或复习考试。 接下来,我要考虑如何组织这些公式。用户提到要分方法或步骤,每个部分换行,避免使用“首先”、“然后”之类的词汇。因此,可能需要将不同的求导规则作为独立的部分,比如基本函数、四则运算、复合函数、隐函数等。 然后,我需要确认每个类别下的具体公式是否正确。例如,幂函数的导数是否正确,指数函数和对数函数的导数是否有特殊情况,比如自然对数和其他底数的处理。四则运算中的乘积法则和商法则是否正确,链式法则的应用是否明确。 另外,用户要求引用内容不能集中在末尾,所以每个公式后面可能需要直接注明来源,但根据示例回答,似乎不需要显式引用来源,而是整合信息。因此,我需要确保信息准确无误,无需标注具体来源。 还要注意数学公式的格式,行内公式用$符号,独立公式用$$。检查每个公式是否正确用符号包裹,尤其是像链式法则中的dy/dx和du/dx是否正确呈现。 然后,用户需要相关问题部分,必须基于原始问题和回答内容生成至少三个相关问题。需要确保问题相关且有逻辑联系,例如隐函数求导步骤、链式法则应用实例、高阶导数计算等。 最后,确保整个回答符合格式要求,没有使用第一人称,步骤词汇,正确使用代码块和公式格式。检查是否有遗漏的重要求导规则,比如三角函数、反三角函数、双曲函数等是否涵盖全面。 可能需要补充一些高阶内容,如一阶导数和二阶导数的例子,或者参数方程的求导方法,但根据常见性,可能用户更关注基础部分,所以保持核心内容清晰更重要。 总结:整理常见导数规则,分点列出,正确格式化公式,生成相关问题,确保符合所有用户指定的格式和内容要求。</think>**常见求导公式及适用场景** **基本函数导数** - 幂函数:$\frac{d}{dx} x^n = nx^{n-1}$($n$为常数) - 指数函数:$\frac{d}{dx} e^x = e^x$,$\frac{d}{dx} a^x = a^x \ln a$($a>0$且$a \neq 1$) - 对数函数:$\frac{d}{dx} \ln x = \frac{1}{x}$,$\frac{d}{dx} \log_a x = \frac{1}{x \ln a}$ - 三角函数: $\frac{d}{dx} \sin x = \cos x$,$\frac{d}{dx} \cos x = -\sin x$ $\frac{d}{dx} \tan x = \sec^2 x$,$\frac{d}{dx} \cot x = -\csc^2 x$ **四则运算求导法则** - 加法/减法:$\frac{d}{dx} [f(x) \pm g(x)] = f'(x) \pm g'(x)$ - 乘法法则:$\frac{d}{dx} [f(x)g(x)] = f'(x)g(x) + f(x)g'(x)$ - 除法法则:$\frac{d}{dx} \left[\frac{f(x)}{g(x)}\right] = \frac{f'(x)g(x) - f(x)g'(x)}{[g(x)]^2}$($g(x) \neq 0$) **复合函数求导(链式法则)** 若$y = f(u)$且$u = g(x)$,则: $$\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx}$$ **高阶导数** 二阶导数表示导数的导数: $$\frac{d^2}{dx^2} f(x) = \frac{d}{dx} \left[\frac{d}{dx} f(x)\right]$$ **隐函数求导** 对方程$F(x, y) = 0$两边同时对$x$求导,解$\frac{dy}{dx}$。例如: 对$x^2 + y^2 = 1$求导得$2x + 2y \frac{dy}{dx} = 0 \Rightarrow \frac{dy}{dx} = -\frac{x}{y}$ **参数方程求导** 若$x = x(t)$,$y = y(t)$,则: $$\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}} \quad (\frac{dx}{dt} \neq 0)$$ **代码示例:符号计算导数** ```python from sympy import symbols, diff x = symbols('x') f = x**3 + 2*x + 5 derivative = diff(f, x) print(derivative) # 输出:3*x**2 + 2 ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值