- 博客(29)
- 收藏
- 关注
原创 求欧拉函数
int euler(int x)//求欧拉函数 { int i, res = x; for(i=2; iint)sqrt(x*1.0)+1; i++) { if(x%i==0) {
2011-09-29 08:46:47 225
原创 poj 3090 Visible Lattice Points
基本思想:不被挡住的条件是(x,y)中的x,y互质,例如A(4,2)会被挡住,会被B(2,1)挡住,B*2=A;先确定n-1层,再确定第n层;整个图像关于对角线对称,所以可以只考虑一半的情况,然后*2;对于第3行,上三角形,确定x,y是否互质就是确定3的欧拉函数值
2011-09-28 13:19:30 231
转载 poj2407Relatives
#include int prime(int x)//判断是否是素数{ int i; for(i=2;i*i { if(!(x%i)) { return 0; } } return 1;}int main()
2011-09-28 10:42:17 203
转载 【HDU 1297】Children’s Queue
Problem DescriptionThere are many students in PHT School. One day, the headmaster whose name is PigHeader wanted all students stand in a l
2011-09-24 13:29:39 383
转载 hdu 1480 钥匙计数之二
一、题目Problem Description一把钥匙有N个槽,2<N<26槽深为1,2,3,4,5,6。每钥匙至少有3个不同的深度且相连的槽其深度之差不得为5。求这样的钥匙的总数。Input本题无输入Output对2Sample Output
2011-09-23 13:20:17 2298
转载 hdu 1438 钥匙计数1
一把锁匙有N个槽,槽深为1,2,3,4。每锁匙至少有3个不同的深度且至少有1对相连的槽其深度之差为3。求这样的锁匙的总数。递推方程式如下1:如果X是钥匙 则X1/2/3/4也是 所以a[I]=a[I-1]*42: 如果X不是,X2/3是则X由1/4组成/但要除去全1和
2011-09-23 13:17:47 767
转载 计算直线的交点数(HDU 1466)
计算直线的交点数(HDU 1466)l 题目要求:Problem Description平面上有n条直线,且无三线共点,问这些直线能有多少种不同交点数。比如,如果n=2,则可能的交点数量为0(平行)或者1(不平行)。Input输入数据包含多个测试实例,每个
2011-09-21 13:18:40 1862
原创 错排的简单理解
设f(n)表示n个元素的错排数 排列:1,2,3,4,5;对排列进行错排:A,1排在2的位置,2排在1的位置,则有f(3)种错排;B,1排在2的位置,2不能排在1的位置,在错排时,2不能在1位置,3不能在3位置,4不能再4位置,5不能再5位置,所以有f(4)种错排
2011-09-20 10:52:34 723
转载 区域划分问题
1.直线(Line)分割平面由于第n条直线与前n-1条直线相交于n-1个点,这n-1个点将第n条直线划分为n个部分,而这第n条直线的两边分别有L(n-1)和n个部分。故L(n)=L(n-1)+n L(0) = 1n条直线最多可以把直线划分为1+(n+1)*n/2个平面
2011-09-19 21:03:45 828
转载 HDU 1465不容易系列之一
Description大家常常感慨,要做好一件事情真的不容易,确实,失败比成功容易多了!做好“一件”事情尚且不易,若想永远成功而总从不失败,那更是难上加难了,就像花钱总是比挣钱容易的道理一样。话虽这样说,我还是要告诉大家,要想失败到一定程度也是不容易的。比如,我高
2011-09-19 14:53:58 964
原创 poj2689 Prime Distance
#include #define size 46341int pri[size],prime[size],ans[1000010],in[1000010],pcnt,left,right,minl,maxl,maxr,minr,mn,mx,anscnt,start,e
2011-09-14 14:06:50 318
原创 poj1061
#include __int64 externed_gcd(__int64 a,__int64 b,__int64 * x,__int64 * y){ __int64 ret,tmp; if(!b) { * x=1; * y=0; ret
2011-09-13 14:18:20 184
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人