一. 装饰器补充:
#wraps装饰器应该加到装饰器最内层的函数上
from functools import wraps
import time
def deco(func):
@wraps(func)
def wrapper(*args, **kwargs):
res = func(*args, **kwargs)
return res
# wrapper.__name__=func.__name__
# wrapper.__doc__=func.__doc__
return wrapper
@deco #index=deco(index) #index=wrapper函数的内存地址
def index():
"""
index 功能
"""
print('welcome to index page')
time.sleep(3)
# print(index.__name__)
# print(help(index)) #index.__doc__
# index()
print(index.__name__)
@wraps(func)的作用其实解释吧wrapper伪装成index,其拥有相同的函数注释说明.
二. 函数递归:
1 什么是函数递归
函数的递归调用是函数嵌套调用的一种特殊形式,在调用一个函数的过程中又直接或者间接地调用该函数
本身,称之为函数的递归调用
递归调用必须有两个明确的阶段:
1. 回溯: 一次次递归调用下去,说白了就一个重复的过程,但需要注意的是每一次重复问题的规模都应该有所减少,直到逼近一个最终的结果,即回溯阶段一定要有一个明确的结束条件
2. 递推: 往回一层一层推算出结果
import sys
print(sys.getrecursionlimit())
sys.setrecursionlimit(2000)
def foo(n):
print('from foo',n)
foo(n+1)
foo(0)
def bar():
print('from bar')
foo()
def foo():
print('from foo')
bar()
foo()
age(5)=age(4)+2
age(4)=age(3)+2
age(3)=age(2)+2
age(2)=age(1)+2
age(1)=18
age(n)=age(n-1)+2 #n>1
age(n)=18 #n=1
递归调用就是一个重复的过程,但是每一次重复问题的规模都应该有所减少,并且应该在满足某种条件的情况下结束重复,开始进入递推阶段
def age(n):
if n == 1:
return 18
return age(n-1) + 2
print(age(5))
l=[1,[2,[3,[4,[5,[6,[7,[8,[9,[10,[11,]]]]]]]]]]]
def search(l):
for item in l:
if type(item) is not list:
# 不是列表直接打印
print(item)
else:
# 判断是列表则继续循环,判断...
search(item)
search(l)
算法:是如何高效率地解决某一个问题的方法/套路
二分法
nums=[13,15,17,23,31,53,74,81,93,102,103,201,303,403,503,777]
find_num=503
def binary_search(nums,find_num):
print(nums)
if len(nums) == 0:
print('not exists')
return
mid_index=len(nums) // 2
if find_num > nums[mid_index]:
# in the right
nums=nums[mid_index+1:]
# 重新执行二分的逻辑
binary_search(nums,find_num)
elif find_num < nums[mid_index]:
#in the left
nums=nums[0:mid_index]
# 重新执行二分的逻辑
binary_search(nums,find_num)
else:
print('find it')
# binary_search(nums,find_num)
binary_search(nums,94)
三. 三元表达式:
def max2(x, y):
# if x > y:
# return x
# else:
# return y
return x if x > y else y
# 三元表达式实现的效果就是:条件成立的情况下返回一个值,不成立的情况下返回另外一种值
# res=条件成立情况下返回的值 if 条件 else 条件不成立情况下返回的值
name=input('your name: ').strip()
res="SB" if name == 'lqz' else "NB"
print(res)
四:列表,字典生成式:
names=['alex','lqz','yyh','fm']
l=[]
for name in names:
res=name + '_DSB'
l.append(res)
print(l)
l=[name + '_DSB' for name in names]
print(l)
names=['alex_sb','lqz_sb','yyh_sb','fm_sb','egon']
l=[]
for name in names:
if name.endswith('sb'):
l.append(name)
print(l)
l=[name for name in names if name.endswith('sb')]
print(l)
items=[
('name','egon'),
('age',18),
('sex','male'),
]
dic=dict(items)
print(dic)
补充
l=['a','b','c','d']
for i,v in enumerate(l):
print(i,v)
keys=['name','age','sex']
vals=['egon',18,'male']
dic={}
for i,k in enumerate(keys):
# print(i,k)
dic[k]=vals[i]
print(dic)
dic={k:vals[i] for i,k in enumerate(keys)}
print(dic)
dic={k:vals[i] for i,k in enumerate(keys) if i > 0}
print(dic)
print({i:i for i in range(10)})
print({i for i in range(10)})
print({i for i in 'hello'})
五. 匿名函数与内置函数
'''
1 匿名函数:就是没有名字的函数
2 为何要用:
用于仅仅临时使用一次的场景,没有重复使用的需求
'''
def sum2(x,y):
return x+y
print(lambda x,y:x+y)
print((lambda x,y:x+y)(1,2))
匿名函数的精髓就是没有名字,为其绑定名字是没有意义的
f=lambda x,y:x+y
print(f)
print(f(1,2))
匿名函数与内置函数结合使用
max,min,sorted,map,filter,reduce
salaries={
'egon':300000,
'alex':100000000,
'wupeiqi':10000,
'yuanhao':2000
}
求薪资最高的那个人名:即比较的是value,但取结果是key
res=max(salaries)
print(res)
可以通过max函数的key参数来改变max函数的比较依据,运行原理:
max函数会“for循环”出一个值,然后将该值传给key指定的函数
调用key指定的函数,将拿到的返回值当作比较依据
def func(name):
# 返回一个人的薪资
return salaries[name]
res=max(salaries,key=func) #'egon'
print(res)
求最大值
res=max(salaries,key=lambda name:salaries[name]) #'egon'
print(res)
求最小值
res=min(salaries,key=lambda name:salaries[name]) #'egon'
print(res)
sorted排序
nums=[11,33,22,9,31]
res=sorted(nums,reverse=True)
print(nums)
print(res)
salaries={
'egon':300000,
'alex':100000000,
'wupeiqi':10000,
'yuanhao':2000
}
for v in salaries.values():
print(v)
res=sorted(salaries.values())
print(res)
res=sorted(salaries,key=lambda name:salaries[name],reverse=True)
print(res)
map:把一个列表按照我们自定义的映射规则映射成一个新的列表
names=['alex','lxx','wxx','yxx']
res=map(lambda name: name + "dSB", names)
print(list(res))
filter: 从一个列表中过滤出符合我们过滤规则的值
运行原理:相当于for循环取出每一个人名,然后传给匿名函数,将调用匿名函数返回值为True的那个人名给留下来
names=['alex_sb','lxx_sb','wxx_sb','egon','yxx']
res=filter(lambda name:name.endswith('sb'),names)
print(list(res))
print([name for name in names if name.endswith('sb')])
reduce: 把多个值合并成一个结果
from functools import reduce
l=['a','b','c','d']
res=reduce(lambda x,y:x+y,l,'A')
'A','a' => 'Aa'
'Aa','b'=>'Aab'
'Aab','c'=>'Aabc'
'Aabc','d'=>'Aabcd'
print(res)
res=reduce(lambda x,y:x+y,l)
'a','b'=>'ab'
print(res)
res=reduce(lambda x,y:x+y,range(1,101))
1,2=>3
3,3=>6
print(res)