OpenCV-图像饱和度

作者:翟天保Steven
版权声明:著作权归作者所有,商业转载请联系作者获得授权,非商业转载请注明出处

实现原理

       图像饱和度是指图像色彩的纯洁性,色彩的鲜艳程度,它是影响色彩最终效果的重要属性之一。饱和度也被称为图片色彩纯度,即色彩中彩色成分和消色成分的占比,这个比例决定了色彩的饱和度及鲜艳程度。当色彩中彩色成分多时,其色彩就呈现饱和(色觉强)、鲜明效果,给人的视觉印象会更强烈;反之,若消色成分多,色彩会显得暗淡,视觉效果也随之减弱。

       饱和度调整算法的实现流程如下:

       1.设置调整参数percent,取值为-100到100,类似PS中设置,归一化后为-1到1。

       2.针对图像所有像素点单个处理。计算RGB三通道的最大值最小值,可进一步得到delta和value:

\\delta=(Max-Min)/255 \\value=(Max+Min)/255

       3.若最大最小一致,即delta=0,则表明为灰点,不需继续操作,直接处理下个像素。

       4.通过value计算出HSL中的L值:

L=(Max-Min)/(2*255)

       5.S值为:

\left\{\begin{matrix} S=delta/value,L<0.5\\ S=delta/(2-value),L\geqslant 0.5 \end{matrix}\right.

       6.当percent大于等于0时,即提高色彩饱和度,那么alpha值为:

\left\{\begin{matrix} alpha=S,percent+S\geqslant 1\\ alpha=1-percent,else \end{matrix}\right.

       此时,调整后的图像RGB三通道值为:

RGB=RGB+(RGB-L*255)*alpha

       7.若percent小于0时,即降低色彩饱和度,则alpha=percent,此时调整后的图像RGB三通道值为:

RGB=L*255+(RGB-L*255)*(1+alpha)

       至此,图像实现了饱和度的调整,算法逻辑参考xingyanxiao。C++实现代码如下。

功能函数代码

// 饱和度
cv::Mat Saturation(cv::Mat src, int percent)
{
	float Increment = percent* 1.0f / 100;
	cv::Mat temp = src.clone();
	int row = src.rows;
	int col = src.cols;
	for (int i = 0; i < row; ++i)
	{
		uchar *t = temp.ptr<uchar>(i);
		uchar *s = src.ptr<uchar>(i);
		for (int j = 0; j < col; ++j)
		{
			uchar b = s[3 * j];
			uchar g = s[3 * j + 1];
			uchar r = s[3 * j + 2];
			float max = max3(r, g, b);
			float min = min3(r, g, b);
			float delta, value;
			float L, S, alpha;
			delta = (max - min) / 255;
			if (delta == 0)
				continue;
			value = (max + min) / 255;
			L = value / 2;
			if (L < 0.5)
				S = delta / value;
			else
				S = delta / (2 - value);
			if (Increment >= 0)
			{
				if ((Increment + S) >= 1)
					alpha = S;
				else
					alpha = 1 - Increment;
				alpha = 1 / alpha - 1;
				t[3 * j + 2] =static_cast<uchar>( r + (r - L * 255) * alpha);
				t[3 * j + 1] = static_cast<uchar>(g + (g - L * 255) * alpha);
				t[3 * j] = static_cast<uchar>(b + (b - L * 255) * alpha);
			}
			else
			{
				alpha = Increment;
				t[3 * j + 2] = static_cast<uchar>(L * 255 + (r - L * 255) * (1 + alpha));
				t[3 * j + 1] = static_cast<uchar>(L * 255 + (g - L * 255) * (1 + alpha));
				t[3 * j] = static_cast<uchar>(L * 255 + (b - L * 255) * (1 + alpha));
			}
		}
	}
	return temp;
}

C++测试代码

#include <opencv2/opencv.hpp>
using namespace cv;
using namespace std;

#define max2(a,b) (a>b?a:b)
#define max3(a,b,c) (a>b?max2(a,c):max2(b,c))
#define min2(a,b) (a<b?a:b)
#define min3(a,b,c) (a<b?min2(a,c):min2(b,c))

cv::Mat Saturation(cv::Mat src, int value);

int main()
{
	cv::Mat src = imread("House.jpg");
	cv::Mat result = Saturation(src, 100);
	imshow("original", src);
	imshow("result", result);
	waitKey(0);
	return 0;
}

// 饱和度
cv::Mat Saturation(cv::Mat src, int percent)
{
	float Increment = percent* 1.0f / 100;
	cv::Mat temp = src.clone();
	int row = src.rows;
	int col = src.cols;
	for (int i = 0; i < row; ++i)
	{
		uchar *t = temp.ptr<uchar>(i);
		uchar *s = src.ptr<uchar>(i);
		for (int j = 0; j < col; ++j)
		{
			uchar b = s[3 * j];
			uchar g = s[3 * j + 1];
			uchar r = s[3 * j + 2];
			float max = max3(r, g, b);
			float min = min3(r, g, b);
			float delta, value;
			float L, S, alpha;
			delta = (max - min) / 255;
			if (delta == 0)
				continue;
			value = (max + min) / 255;
			L = value / 2;
			if (L < 0.5)
				S = delta / value;
			else
				S = delta / (2 - value);
			if (Increment >= 0)
			{
				if ((Increment + S) >= 1)
					alpha = S;
				else
					alpha = 1 - Increment;
				alpha = 1 / alpha - 1;
				t[3 * j + 2] =static_cast<uchar>( r + (r - L * 255) * alpha);
				t[3 * j + 1] = static_cast<uchar>(g + (g - L * 255) * alpha);
				t[3 * j] = static_cast<uchar>(b + (b - L * 255) * alpha);
			}
			else
			{
				alpha = Increment;
				t[3 * j + 2] = static_cast<uchar>(L * 255 + (r - L * 255) * (1 + alpha));
				t[3 * j + 1] = static_cast<uchar>(L * 255 + (g - L * 255) * (1 + alpha));
				t[3 * j] = static_cast<uchar>(L * 255 + (b - L * 255) * (1 + alpha));
			}
		}
	}
	return temp;
}

测试效果

图1 原图
图2 percent为50时的效果图
图3 percent为-50时的效果图

       通过调整percent可以实现图像饱和度的调整。

       如果函数有什么可以改进完善的地方,非常欢迎大家指出,一同进步何乐而不为呢~

       如果文章帮助到你了,可以点个赞让我知道,我会很快乐~加油!

### 使用 OpenCV-Python 调整图像饱和度 为了调整图像饱和度,可以利用OpenCV库中的`cv2.cvtColor()`函数将BGR颜色空间转换到HSV颜色空间,在此空间内修改V通道(即亮度),再转回BGR颜色空间[^1]。 下面是一个具体的Python代码示例来展示如何实现这一过程: ```python import cv2 import numpy as np def adjust_saturation(img, saturation_factor): """ Adjust the saturation of an input image. Parameters: img (numpy.ndarray): Input BGR image to be processed. saturation_factor (float): Factor by which to increase or decrease saturation. A value greater than 1 increases saturation while a value less than 1 decreases it. Returns: numpy.ndarray: The output image with adjusted saturation. """ # Convert from BGR color space to HSV color space hsv_img = cv2.cvtColor(img, cv2.COLOR_BGR2HSV) # Splitting the channels into separate arrays h, s, v = cv2.split(hsv_img) # Apply saturation adjustment on S channel only s_adjusted = np.clip(s * saturation_factor, 0, 255).astype(np.uint8) # Merge back all three channels after adjusting saturation hsv_modified = cv2.merge([h, s_adjusted, v]) # Converting modified HSV image back into BGR format result_img = cv2.cvtColor(hsv_modified, cv2.COLOR_HSV2BGR) return result_img # Example usage: # Load your own picture here instead of 'example.jpg' original_image = cv2.imread("path_to_your_image") # Increase/decrease saturation; try values like 0.5 for decreasing and 1.5 for increasing adjusted_image = adjust_saturation(original_image, 1.5) # Display both images side-by-side using matplotlib for comparison purposes import matplotlib.pyplot as plt plt.figure(figsize=(10, 5)) plt.subplot(1, 2, 1), plt.title('Original'), plt.axis('off') plt.imshow(cv2.cvtColor(original_image, cv2.COLOR_BGR2RGB)) plt.subplot(1, 2, 2), plt.title('Adjusted Saturation'), plt.axis('off') plt.imshow(cv2.cvtColor(adjusted_image, cv2.COLOR_BGR2RGB)) plt.show() ``` 这段脚本定义了一个名为`adjust_saturation`的功能,该功能接收两个参数:一个是待处理的原始图像数组;另一个是指定饱和度增强倍率的因素。通过改变这个因素,可以在一定程度上控制最终输出图像的颜色鲜艳程度。注意这里的路径需要替换成实际存在的文件位置[^3]。
评论 24
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

翟天保Steven

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值