统计学习方法 第四章 | 朴素贝叶斯法

目录

1 朴素贝叶斯法的学习与分类

1.1 基本方法

1.2 后验概率最大化的含义

2 朴素贝叶斯法的参数估计

2.1 极大似然估计

2.2 贝叶斯估计法


1 朴素贝叶斯法的学习与分类

1.1 基本方法

假设训练数据集 T = \left\{ \left( x _ { 1 } , y _ { 1 } \right) , \left( x _ { 2 } , y _ { 2 } \right) , \cdots , \left( x _ { N } , y _ { N } \right) \right\} 由 P ( X , Y ) 独立同分布产生

(1)学习先验概率分布 P \left( Y = c _ { k } \right) , \quad k = 1,2 , \cdots , K 

(2)学习条件概率分布  

P ( X = x | Y = c _ { k } ) = P \left( X ^ { ( 1 ) } = x ^ { ( 1 ) } , \cdots , X ^ { ( n ) } = x ^ { ( n ) } | Y = c _ { k } \right) , \\ \quad\quad k = 1,2 , \cdots , K

(3)于是学习到联合概率分布  P ( X , Y )

 

  • 朴素贝叶斯法对条件概率分布作了条件独立性的假设。由于这是一个较强的假设,朴素贝叶斯法也由此得名。具体地,条件独立性假设是:

​​​​​​​      \begin{aligned} P ( X = x | Y = c _ { k } ) & = P \left( X ^ { ( 1 ) } = x ^ { ( 1 ) } , \cdots , X ^ { ( n ) } = x ^ { ( n ) } | Y = c _ { k } \right) \\ & = \prod _ { j = 1 } ^ { n } P \left( X ^ { ( j ) } = x ^ { ( j ) } | Y = c _ { k } \right) \end{aligned}

       即每个特征相互独立

  • 朴素贝叶斯分类器可表示为:

      y = f ( x ) = \arg \max _ { c _ { k } } \frac { P \left( Y = c _ { k } \right) \prod _ { j } P \left( X ^ { ( j ) } = x ^ { ( j ) } | Y = c _ { k } \right) } { \sum _ { k } P \left( Y = c _ { k } \right) \prod _ { j } P \left( X ^ { ( j ) } = x ^ { ( j ) } | Y = c _ { k } \right) }

 

1.2 后验概率最大化的含义

后验概率最大化 <=> 期望风险最小化

 

2 朴素贝叶斯法的参数估计

2.1 极大似然估计

在朴素贝叶斯法中,学习意味着估计 P \left( Y = c _ { k } \right) 和 P \left( X ^ { ( j ) } = x ^ { ( j ) } | Y = c _ { k } \right),可以应用极大似然估计法来估计相应的概率

  • 先验概率 P \left( Y = c _ { k } \right)​​​​​​​ 的极大似然估计是:

      P \left( Y = c _ { k } \right) = \frac { \sum _ { i = 1 } ^ { N } I \left( y _ { i } = c _ { k } \right) } { N } , k = 1,2 , \cdots , K

  • 设第 j 个特征x(j) 可能取值的集合为{aj1,aj2...ajSj},条件概率的极大似然估计是:

       \begin{array} { l } { P \left( X ^ { ( j ) } = a _ { j l } | Y = c _ { k } \right) = \frac { \sum _ { i = 1 } ^ { N } I \left( x _ { i } ^ { ( j ) } = a _ { j l } y _ { i } = c _ { k } \right) } { \sum _ { i = 1 } ^ { N } I \left( y _ { i } = c _ { k } \right) } } \\ { j = 1,2 , \cdots , n ; l = 1,2 , \cdots , S _ { j } : \quad k = 1,2 , \cdots , K } \end{array}

 

2.2 贝叶斯估计法

用极大似然估计可能会出现所要估计的概率值为 0 的情况。这时会影响到后验概率的计算结果,使分类产生偏差。解决这一问题的方法是采用贝叶斯估计。具体地,条件概率的贝叶斯估计是:

\begin{array} { l } { P \left( X ^ { ( j ) } = a _ { j l } | Y = c _ { k } \right) = \frac { \sum _ { i = 1 } ^ { N } I \left( x _ { i } ^ { ( j ) } = a _ { j l } y _ { i } = c _ { k }+ \right) +\lambda} { \sum _ { i = 1 } ^ { N } I \left( y _ { i } = c _ { k } \right) +S_j\lambda} } \\ { j = 1,2 , \cdots , n ; l = 1,2 , \cdots , S _ { j } : \quad k = 1,2 , \cdots , K } \end{array}

式中 \lambda \geq 0

  • \lambda = 0 时就是极大似然估计
  • \lambda = 1 时就是拉普拉斯平滑

 

例题 

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值