光储充微电网现状分析及相关解决方案分享

背景与现状

在双碳战略及光伏、储能、新能源汽车的不断发展之下,“光伏+储能+充电”组合越来越多的被应用到市场中。随着光储充站点的建设,相应的问题也随之产生:

→新能源利用率低:大量分布式能源装机后存在弃风弃光、或者直接并网导致回收期增加;

→电能质量下降:新能源汽车充电给局部电网造成电力冲击,造成充电场站整体电能质量不稳定,影响设备运行;

→数据分析不全:新能源利用率、光储设备运行状态、用电能耗与成本缺乏分析,协调出力无依与据;

→综合用电成本高:未消纳的分布式电源,直接余电上网、缺乏有序管理、对分时电价关注低,导致综合用电成本居高不下,盈利周期长;

→能源可靠性不足:新能源易受环境影响供电可靠性低、新能源汽车充电易对电网形成冲击或者超容,影响系统供电可靠性;

→能量管理挑战多:负荷需求、扩容问题、天气状况、电网分时电价等因素下,无法实现微电网内部能量的有效控制和调度。

应用场景

随着“光伏+储能+充电”组合的广泛应用,光储充一体化作为一种高效的能源利用模式,适用于多种场景,主要包括:电动汽车充电站、工业园区、商业建筑、住宅社区、偏远地区、微电网、电网辅助服务、能源替代等。

解决方案

(1)方案简介

通过在光储充微电网系统的源、网、荷、储、充的各个关键节点安装各类监测、分析、保护、治理装置;通过先进的控制、计量、通信等技术,将分布式电源、储能系统、可控负荷、电动汽车聚合在一起;结合最新的电网价格、用电负荷、电网调度指令等情况,灵活调整微电网控制策略并下发给储能、可调负荷等系统,保证企业微电网始终高效、稳定运行。

(2)系统架构

图片

(3)系统功能

综合监控:实现微电网光伏、储能、负荷、充电桩、环境数据的采集、监测、可视化展示、异常告警、事件查询、报表统计等功能;

◆ 智能控制:协同光伏、储能、负载等多种能源主体,动态规划智能策略,实现储能、光伏协调控制,比如计划曲线、

削峰填谷、防逆流、新能源消纳、需量控制等;能源分析:具备微电网能耗及效益分析、微电网经济运行分析、多维度电量分析,并进行日、月、年能源报表统计;

◆功率预测:以历史光伏输出功率和历史数值天气数据为基础,结合数值天气预报数据和光伏发电单元的地理位置,采用深度学习算法建立预测模型库,实现光伏发电的短时和超短时功率预测,并经进行误差分析:同时对微电网内所有负荷,基于历史负荷数据,通过大数据分析算法,预测负荷功率曲线。

◆优化调度:根据分布式能源发电预测、负荷预测结果,并结合分时电价、电网交互功率及储能约束条件等因素,以用电成本最低为目标,建立优化模型,采用深度学习算法解析微电网运行功率计划,系统通过将功率计划进行分解,实现对光伏、储能、充电桩的优化控制:

安科瑞系统解决方案案例

湖南某新材料公司光储充一体化项目

项目背景:

项目名称:湖南某新材料科技有限公司光储充一体化项目工程总承包(EPC)

建设地点:长沙市望城经济技术开发区

建设规模:储能装机容量7.5MW/16.054MWh,光伏装机容量533.6kWp,充电桩装机容量300kW。

建设内容: 本项目拟建设光储充一体项目,配置一套直流侧装机容量为533.6kWp 、交流侧容量0.44MW 分布式光伏发电系统,光伏板分布在办公楼(1338.54m2)与正极材料车间(4950m2)的屋顶;一套由75个100KW/215KWh 液冷户外一体柜组成,装机容量7.5MW/16.054MWh 的储能系统;1 套由 1个 120kW 双枪直流、6个 30KW 的单枪直流组成充电桩,上网模式采取自发自用。

项目范围:

根据项目实际需求及实际情况,定制设计一套Acrel-2000M/G。

接入充电桩8台,预留2台接口。

接入数采仪1台,4台逆变器

接入德赛储能柜48台

接入鹏辉储能柜26台

图片

项目系统结构:

图片

项目效果展示

图片

图片

图片

### 光储充微电网选址与定容方法 #### 1. 微电网选址与定容的重要性 在配电网中,光储充微电网的选址与定容是一个复杂的过程,涉及多个因素的平衡。它不仅影响到系统的经济效益,还决定了能否有效满足负荷需求以及减少运行成本。基于改进的粒子群优化(PSO)算法构建的能量管理系统(EMS),能够最小化分布式能源系统的运行成本,同时确保负荷需求得到满足[^1]。 #### 2. 综合能源示范试点场站的设计思路 选取合适的地点作为示范试点是成功实施的关键之一。例如,在实际应用案例中,选择了朝阳区东*路和大鲁店348路两处公交场站作为综合能源示范试点场站。这些站点已经具备一定的储能基础(每站配置260kWh的储能设备)。在此基础上进一步扩展功能,增加光伏系统和能量监控管理系统,从而实现对多种能源形式的有效管理和调度[^2]。 #### 3. 基于路径规划的方法论拓展 除了传统的选址考量外,还可以借鉴路径规划方面的研究成果应用于更广泛的场景下。比如旅行商问题(TSP)及其变种、无人机三维路径规划等领域内的技术手段也可以为解决复杂的网络结构提供新视角[^3]。 #### 4. 使用粒子群算法进行模型建立与仿真验证 对于具体的实现流程而言, 可采用粒子群算法(Particle Swarm Optimization Algorithm),该方法特别适用于处理像储能调峰这样的动态优化问题。通过定义一组初始条件下的“粒子”,即不同的充放电策略组合,并依据预设规则不断调整它们的位置直至找到最优解。在这个过程中,适应度函数通常由电网峰谷负荷差异程度加上储能操作费用构成,以此衡量各候选方案的表现优劣[^4]。 以下是利用MATLAB编写的一个简单例子展示如何运用上述原理完成一次基本运算: ```matlab function [bestPosition,bestFitness]=psoOptimization() % 参数初始化... end ``` 以上代码片段仅为框架示意,请根据实际情况补充完整逻辑细节后再执行测试。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值