给定两个凸多边形 P 和 Q, 目标是需要找到点对 (p,q) (p 属于 P 且 q 属于 Q) 使得他们之间的距离最大。
很直观地,这些点不可能属于他们各自多边形的内部。 这种情况事实上与直径问题非常相似:
两凸多边形 P 和 Q 之间最大距离是由多边形间的对踵点对确定。 虽然这么说, 但是这个定义与给定的凸多边形的对踵点对的不同。 和凸多边形之间的对踵点对本质上的区别在于切线是有向且是反向的。 下图是一个例子:
上述结论暗示不单纯只是顶点对需要检测, 而仅仅是考虑特定的顶点对。 事实上他们只检测一个基于旋转卡壳模式的算法确立的平行切线。
考虑如下的算法, 算法的输入是两个凸多边形 P 和 Q,它们分别有 m 和 n 个顺时针给定顶点。
1、计算 P 上 y 坐标值最小的顶点(称为 yminP ) 和 Q 上 y 坐标值最大的顶点(称为 ymaxQ)。
2、为多边形在 yminP 和 ymaxQ 处构造两条切线 LP 和 LQ 使得他们对应的多边形位于他们的右侧。 此时 LP和 LQ 拥有不同的方向, 并且 yminP 和 ymaxQ 成为了多边形间的一个对踵点对。
3、计算距离(yminP,ymaxQ) 并且将其维护为当前最大值。
4、顺时针同时旋转平行线直到其中一个与其所在的多边形的边重合。
5、一个新的对踵点对产生了。 计算新距离, 与当前最大值比较, 如果大于当前最大值则更新。 如果两条线同时与边发生重合, 此时总共三个对踵点对(先前顶点和新顶点的组合)需要考虑在内。
6、重复执行步骤4和步骤5, 直到新的点对为(yminP,ymaxQ)。
7、输出最大距离。
旋转卡壳模式确保了所有的对踵点对都被考虑到。 此外, 整个算法拥有线性的时间复杂度, 因为(除了初始化), 执行步数与顶点数相同。类似的算法可以被用于凸多边形间最小距离问题中。