题目
当自然数 n 依次取 1、2、3、……、N 时,算式 ⌊n/2⌋+⌊n/3⌋+⌊n/5⌋ 有多少个不同的值?(注:⌊x⌋ 为取整函数,表示不超过 x 的最大自然数,即 x 的整数部分。)
输入格式:
输入给出一个正整数 N(2≤N≤10^4)。
输出格式:
在一行中输出题面中算式取到的不同值的个数。
输入样例:
2017
输出样例:
1480
思路
这是道数学题,可以1行代码搞定。
-
当n取到2、3、5的倍数时结果发生变化,不同值+1,加上初始的0, sum = n / 2 + n / 3 + n / 5 + 1。
-
当n取到其中两个数的公倍数时,第1步中多加了1次。故要从中减去n / 6 + n / 10 + n / 15。
-
当n取到三个数的公倍数时,第1步中多加了2次,第2步中减了3次,所以要再补上n / 30。
最终sum = n / 2 + n / 3 + n / 5 + 1 - n / 6 - n / 10 - n / 15 + n / 30。
代码
#includ