PAT乙级真题 1094 谷歌的招聘 C++实现

题目

2004 年 7 月,谷歌在硅谷的 101 号公路边竖立了一块巨大的广告牌(如下图)用于招聘。内容超级简单,就是一个以 .com 结尾的网址,而前面的网址是一个 10 位素数,这个素数是自然常数 e 中最早出现的 10 位连续数字。能找出这个素数的人,就可以通过访问谷歌的这个网站进入招聘流程的下一步。
在这里插入图片描述
自然常数 e 是一个著名的超越数,前面若干位写出来是这样的:e = 2.718281828459045235360287471352662497757247093699959574966967627724076630353547594571382178525166427427466391932003059921… 其中粗体标出的 10 位数就是答案。
本题要求你编程解决一个更通用的问题:从任一给定的长度为 L 的数字中,找出最早出现的 K 位连续数字所组成的素数。
输入格式:
输入在第一行给出 2 个正整数,分别是 L(不超过 1000 的正整数,为数字长度)和 K(小于 10 的正整数)。接下来一行给出一个长度为 L 的正整数 N。
输出格式:
在一行中输出 N 中最早出现的 K 位连续数字所组成的素数。如果这样的素数不存在,则输出 404。注意,原始数字中的前导零也计算在位数之内。例如在 200236 中找 4 位素数,0023 算是解;但第一位 2 不能被当成 0002 输出,因为在原始数字中不存在这个 2 的前导零。
输入样例 1:
20 5
23654987725541023819
输出样例 1:
49877
输入样例 2:
10 3
2468024680
输出样例 2:
404

思路

substr取长度为k的子字符串,用stoi转换为整数(最长9位,不超过int),如果是素数则输出;若未找到,则输出404。

int范围是-2 ^ 31——2 ^ 31 - 1,即-2147483648~2147483647,十进制共10位,最大约为2.14 * 10 ^ 9。

代码

#include <iostream>
#include <string>
#include <cmath>
using namespace std;

bool isPrime(long n){
    //用pow(n, 0.5)效率低下,sqrt效率高
    for (int i=2; i<=sqrt(n); i++){
        if (n%i==0){
            return false;
        }
    }
    return true;
}
int main(){
    int l, k;
    string n;
    cin >> l >> k >> n;
    bool found = false;
    for (int i=0; i+k<=l; i++){
        string s = n.substr(i, k);
        long temp = stol(s);
        if (isPrime(temp)){
            found = true;
            cout << s << endl;
            break;
        }
    }
    if (!found){
        cout << "404" << endl;
    }
    return 0;
}
发布了132 篇原创文章 · 获赞 7 · 访问量 3157
展开阅读全文

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 大白 设计师: CSDN官方博客

分享到微信朋友圈

×

扫一扫,手机浏览