题目
Given a sequence of positive integers and another positive integer p. The sequence is said to be a perfect sequence if M≤m×p where M and m are the maximum and minimum numbers in the sequence, respectively.
Now given a sequence and a parameter p, you are supposed to find from the sequence as many numbers as possible to form a perfect subsequence.
Input Specification:
Each input file contains one test case. For each case, the first line contains two positive integers N and p, where N (≤10^5) is the number of integers in the sequence, and p (≤10 ^ 9 ) is the parameter. In the second line there are N positive integers, each is no greater than 10 ^ 9 .
Output Specification:
For each test case, print in one line the maximum number of integers that can be chosen to form a perfect subsequence.
Sample Input:
10 8
2 3 20 4 5 1 6 7 8 9
Sample Output:
8
思路
所求序列是最大、最小数的商小于等于p的最长的那段。
将数组排序,用i、j分别指向头尾,若符合要求则不断右移j,记录最大范围m;
若不符合要求则右移i,重新搜索,找到比m更大的话替换m;
当剩余元素数 n - i < m 时搜索结束(即使全都符合也不会比之前的m更长了&#